This research carried out to figure out the effect of the green manure crop cultivated at a preparation field and the shading net on the growth, development, and quality of ginseng. Followings are results obtained from the research. Leaf width of ginseng under the shading net of a two-layered blue and two-layered black polythylene net (TBTBPN) was good at rye and hairy vetch cultured group. Leaf length of ginseng under the shading net of a threelayered blue and one-layered black polyethylene net (TBOBPN) was good at barley and hairy vetch cultured group. Meanwhile, leaf width was good at hairy vetch cultured group. Leaf length of ginseng under a blue polyethylene sheet (BPS) was good at a barley and barley + hairy vetch cultured group, but stem length was shorter compare to other shading net cultivations. Root weight of ginseng was good under the shading net of a two-layered blue and two-layered black polyethylene net (TBTBPN) at a rye and hairy vetch cultured group, and was good under the shading net of a three-layered blue and onelayered black polyethylene net (TBOBPN) at a barley + hairy vetch cultured group, but there was no significant difference under blackout screen according to manure crop varieties. Ratio of rusty root was 10.2% at the barley cultured group under the shading net of a two-layered blue and two-layered black polyethylene net (TBTBPN), and was 23.1% at hairy vetch cultured group under shading net of a three-layered blue and one-layered black polyethylene net (TBOBPN). Ratio of rusty root was the lowest at a rye cultured group regardless the shading nets. Content of the ginsenoside was the highest at the rye cultured group under the shading net of two-layered blue and two-layered black polyethylene net (TBTBPN), was the highest at the barley cultured group under the shading net of a three-layered blue and one-layered black polyethylene net (TBOBPN), and was the highest at the rye cultured group under the blackout screen.
An LED plant factory farm is an alternative way to grow crops regardless of weather, season, and blight in such times of climate change. In recent years, it is a currently active and vibrant research field. The industry, which ranges from leaf vegetables to high value products, is expanding. This study was conducted to test tthe response of LED (Lightemitting diode) irradiation on the growth characteristics and ginsenoside levels indoors, in order to find out suitable light conditions. Ginseng seedling was transplanted from a styrofoam pot (L×W×D:495×315×215 mm, inside diameter) into a closed plant production system in four blue LED (BL) and red LED (RL) different ratios of 1:1, 1;2, 1:3, 1:4 in a temperature range of 20~25℃, relative humidity of between 55 and 65%, and a 12-hour photoperiod. The LED irradiation shows the highest levels were found at 1:1 of BL and RL ratio at 61.21 μmol s-lm-2, 1:2 ratio 68.55 μmol s-lm-2, 1:3 ratio 63.85 μmol s-lm-2 and 1:4 ratio 62.41 μmol s-lm-2 from highest to lowest respectively. After analyzing from shoot and root 2 yers old ginseng plant which were cultivated under 1:3 irradiation of BL and RL ratio, it generally showed a positive effect under a 1:3 ratio of BL and RL.
고품질 우량인삼 생산을 위한 해가림자재별 인삼의 생육 상황과 해가림 아래의 미기상 변화를 조사하였고, 각각의 해가림자재에서 생산된 수삼의 유효성분들을 조사 분석한 결과, 6~8월까지의 해가림자재별로 온도는 차광지>차광판> 차광지 순이었고, 투광량도 차광지가 8월에 381.7 μmol/s/m2 로 인삼포내 온도가 가장 높은 원인이었다. 2~3년 인삼의 지상부 생육은 차광망>차광판>차광지 순이었으며, 4년근은 차광판=차광지>차광망 순으로 좋았다. 4년근 인삼의 진세 노사이드 총함량은 차광판>차광지>차광망 순으로 많았으 며, 수삼의 색도는 차광망>차광판>차광지 순으로 높았다