검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 328

        125.
        2015.10 구독 인증기관·개인회원 무료
        Acetylcholinesterase (AChE) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine. Soluble form of AChE is generated via alternative splicing and functions as a bioscavenger in Dropsophila melanogaster. In this study, effects of acetic acid on the soluble AChE expression were investigated. Treatment of acetic acid resulted in over-expression of soluble AChE in the abdomen in a dose-dependent manner. The soluble AChE was determined to be expressed in the fat body. However, no apparent change in AChE expression was observed in the head. Our finding suggests that the soluble AChE is involved in chemical defense against high concentration of acetic acid, which is a common by-product in fermenting foods. The high level of acetic acid resistance in D. melanogaster, thus, appears to have been evolved via the induction mechanism of soluble AChE expression.
        126.
        2015.04 구독 인증기관·개인회원 무료
        This study is the first report about the toxicity of pesticides to the mycophagous predator, I. koebelei, of powdery mildew of agricultural crops. Pesticides we tested are composed of synthetic and environmental-friendly products and being used conventionally for the control of insect or microbial pests on cucumber in Korea. our study was conducted to determine the relative toxicities of several pesticides used in Korea cucumber production to mycophagous natural enemy, I. koebelei and to provide a background for implementation of integrated powdery mildew management programs. Based on IOBC classification, three insecticides, bifenthrin + imidacloprid, acetamiprid + indoxacarb, acetamiprid + etopheprox are classified as having a Class 4 (harmful). Spiromesifen showed the low toxicity to the survival and the fecundity of I. koebelei when this chemical had been exposed to 3rd larva or newly emerged adult via feeding with cucumber powdery mildew. However, pyriproxyfen not only decreased the fecundity of female adult but also strongly prohibited from pupation. Many commercial biological or botanical pesticides can restrict the population of I. koebelei. However, Q pact (a.i. Ampelomyces quisqualis 94013), Top seed (a.i. Paenibacillus polymyxa AC-1), BT one (Bacillus thuringiensis) and Solbitchae (insecticidal microorganism) had no toxicity to I. koebelei when this chemical had been exposed to 3rd larva or newly emerged adult feeding with cucumber powdery mildew.
        127.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Extracts from Aloe vera leaves, Aloe arborescens leaves, Aloe vera callus, Portulaca oleracea and cacao (Theobroma cacao L.) bean husk (CBH) were prepared using acetone, chloroform, ethanol, hexane, and water. Solvent extracts of Aloe vera leaf had very high antioxidant activities showing IC50 values in the ranges of 0.02-0.17 mg/ mL, and had the highest total phenolic and flavonoid content among the tested samples. We hypothesized that Aloe vera leaf and CBH extracts might possess considerable in vitro anti-glycation activities. Indeed, these extracts strongly inhibited the formation of advanced glycation end-products from RNase in the presence of ribose. The chloroform extract of Aloe vera leaf showed the strongest inhibition of AGE formation (99.9%), followed by the 95% acetone extract (92.8%) at a concentration of 1 mg/mL, exhibiting higher anti-glycation activities than those of AG and rutin (73.4% and 96.1% at 1 mg/mL, respectively). The anti-glycation activity of all extracts was correlated positively with their total contents of phenolics and flavonoids. We conclude that Aloe vera leaf extracts and their constituents may be used as anti-glycation agents.
        4,000원
        129.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, methods that usea carbon-based filler, a conductive nanomaterial, have been investigated to develop composite fillers containing dielectric materials. In this study, we added geometric changes to a carbon fiber, a typical carbon-based filler material, by differentiating the orientation angle and the number of plies of the fiber. We also studied the electrical and electromagnetic shield characteristics. Based on the orientation angle of 0˚, the orientation angle of the carbon fiber was changed between 0, 15, 30, 45, and 90˚, and 2, 4, and 6 plies were stacked for each orientation angle. The maximum effect was found when the orientation angle was 90˚, which was perpendicular to the electromagnetic wave flow, as compared to 0˚, in which case the electrical resistance was small. Therefore, it is verified that the orientation angle has more of an effect on the electromagnetic interference shield performance than the number of plies.
        4,000원
        130.
        2014.10 구독 인증기관·개인회원 무료
        Riptortus pedestris possesses Burkholderia as gut symbiont in a symbiotic organ M4 midgut. To answer why Burkholderia symbionts are not eliminated by Riptortu s immune responses, we developed two hypotheses: (i) Burkholderia symbionts do not activate host innate immunity, or (ii) Burkholderia symbionts are resistant to th e host immune responses. For the first hypothesis, we compared the antimicrobial activities of the cultured Burkholderia-injected hemolymph and symbiotic Burkhol deria-injected hemolymphs. As a result, the symbiotic Burkholderia induced antim icrobial activity like the cultured Burkholderia, indicating the symbiotic cells are st ill immunogentic to host. However, when the activated hemolymph was treated to the Burkholderia cells, the symbiotic Burkholderia showed much higher susceptibi lity than the cultured Burkholderia. To understand molecular basis of these results, we purified antimicrobial peptides (AMPs) from Riptortus hemolymph. Similarly, the symbiotic Burkholderia exhibited the high susceptibility to the purified AMPs, riptocin and rip-defensin. To understand how symbiotic Burkholderia can survive in host in spite of their immuno-susceptibility, we examined the AMP expression i n the M4 midgut. Interestingly, the expression of AMPs is suppressed in the M4 mi dgut in comparison to that of the fat body. Finally, we proposed that the immuno-su sceptibility of Burkholderia symbiont helps them to retain in the symbiotic organ. Our in vivo data showing the rapid clearance of the symbiotic Burkholderia after inj ection to host Riptortus supports our proposal.
        131.
        2014.06 구독 인증기관 무료, 개인회원 유료
        Despite many researches related with in-vitro culture of porcine spematogonial stem cells (SSCs), adherent culture system widely used has shown a limitation in the maintenance of porcine SSC self-renewal. Therefore, in order to overcome this obstacle, suspension culture, which is known to have numerous advantage over adherent culture, was applied to the culture of porcine SSCs. Porcine SSCs retrieved from neonatal testes were suspension-cultured for 5 days or 20 days, and characteristics of suspension-cultured porcine SSCs including proliferation, alkaline phosphatase (AP) activity, and self-renewal-specific gene expression were investigated and compared with those of adherent-cul-tured porcine SSCs. As the results, the suspension-cultured porcine SSCs showed entirely non-proliferative and significantly higher rate of AP-positive cells and expression of self-renewal-specific genes than the adherent-cultured porcine SSCs. In addition, long-term culture of porcine SSCs in suspension condition induced significant decrease in the yield of AP staining-positive cells on post-day 10 of culture. These results showed that suspension culture was inappropriate to culture porcine SSCs, because the culture of porcine SSCs in suspension condition didn’t stimulate proliferation and maintain AP activity of porcine SSCs, regardless of culture periods.
        4,000원
        134.
        2014.04 구독 인증기관·개인회원 무료
        The Riptortus-Burkholderia symbiosis is a newly emerging insect-bacterium symbiotic system. This symbiosis system has a good merit as an experimental model system to produce the non-symbiotic (apo) and symbiotic (sym) host insect. In recent reported papers, the symbionts play important biological roles for the host insects. Meanwhile, juvenile hormone (JH) is one of major hormone synthesized corpora allata(CA) to control many physiology of insect. However, the study for cross-talk mechanism between symbionts and host hormones to control important physiological phenomenon of insects is almost none. In this study, we found that Riptortus speed up adult emerging and increase egg laying on presence of symbiont Burkholderia. Also we found that hexamerin proteins, which were controlled the expression by JH, were accumulated in sym-Riptortus hemolymph compare with apo-Riptortus. According as combined results, we hypothesized that the gut symbiont Burkholderia can control JH titer to conclude out beneficial effects such as development and reproduction of R. pedestris. To verify this hypothesis, we examined measurement of JH titer, expression of hexamerins as JH response genes and RNAi for hexamerin protein during whole Riptortus life on presence or absence of symbiont Burkholderia. All results demonstrated that gut symbiont controlled JH titer of Riptortus. Controlled JH amount by symbiont Burkholderia in host midgut regulated hexamerin protein expression for speeding up adult emerging and increasing egg production.
        135.
        2014.04 구독 인증기관·개인회원 무료
        Beet armyworm, Spodoptera exigua is difficult to control using chemical insecticides because of the development of insecticide resistance. Various control agents may use for eco-friendly beet armyworm managements, Entomopathogenic fungus is one of the promising control agents as an alternative to chemical control agent. At previous study we isolated a number of entomopathogenic fungi from soil samples and selected three entomopathogenic fungi, Metarhizium anisopliae FT83, Paecilomyces fumosoroseus FG340 and Metarhizium anisopliae FG344 which had high virulence against larva of beet armyworm. To select an isolate having high virulence at high temperature against S. exigua, thermophilic pest, we conducted bioassay at five different temperatures(15, 20, 25, 30, 35℃). These three isolates showed the high mortality and low LT50 at 30℃. To select substrate for mass production these isolates were inoculated(5×10⁴/㎖, 20㎖) at barley, unpolished rice, wheat bran and rice bran and incubated for 14 days at 25℃. Wheat bran showed highest conidia production of M. anisopliae FT83 and P. funosoroseus FG340 and barley was suitable for M. anisopliae FG344.
        136.
        2014.04 구독 인증기관·개인회원 무료
        Various insect pests infest crops including vegetables and ornamentals during crop production. Chemical pesticides have generally used until recently to control pests. Many pests are very difficult to control using organic pesticides because of the development of insecticide resistance and their rapid population increase. Entomopathogens are the promising alternative control methods. Entomopathogenic fungi are good candidates to control sucking insects such as aphid, whitefly and mite because the fungi can infect without ingestion. Conidia or blastospores of fungal entomopathogens are sprayed onto target plant and/or insect, adhered on insect surfaces, and penetrated into hemocoel through insect cuticle. Then the fungus utilize insect nutrients and kill the host insect. During this process, fungus was influenced by environmental conditions such as temperature, relative humidity and UV light. These are causing slow mortality and preventing wider application and use of mycopescitide using entomopathogenic fungi. In addition, control efficacy with fungal entomopathogen differed fungal isolate and host insect. Therefore, we need to study selection of high virulence isolate, mass production, formulation and application techniques to develop mycopesticide.
        140.
        2013.10 구독 인증기관·개인회원 무료
        The centipede Scolopendra subspinipes mutilans has been a medically important arthropod species by using it as a traditional medicine for the treatment of various diseases. In this study, we derived a novel lactoferricin B like peptide (LBLP) from the whole bodies of adult centipedes, S. s. mutilans, and investigated the antifungal effect of LBLP. LBLP exerted an antifungal and fungicidal activity without hemolysis. To investigate the antifungal mechanism of LBLP, a membrane study with propidium iodide was first conducted against Candida albicans. The result showed that LBLP caused fungal membrane permeabilization. The assays of the three dimensional flow cytometric contour plot and membrane potential further showed cell shrinkage and membrane depolarization by the membrane damage. Finally, we confirmed the membrane-active mechanism of LBLP by synthesizing model membranes, calcein and FITC-dextran loaded large unilamellar vesicles. These results showed that the antifungal effect of LBLP on membrane was due to the formation of pores with radii between 0.74 nm and 1.4 nm. In conclusion, this study suggests that LBLP exerts a potent antifungal activity by pore formation in the membrane, eventually leading to fungal cell death.