Mathematically modeling photosynthesis helps to interpret gas exchange in a plant and estimate the photosynthetic rate as affected by environmental factors. Notably, the photosynthetic rate varies among leaf vertical positions within a single plant. The objective of this study was to measure the distinct photosynthetic rate of lily (Lilium Oriental Hybrid ‘Casa Blanca’) at the upper, medium, and basal leaf positions. Subsequently, the FvCB (Farquhar-von Caemmerer-Berry) photosynthesis model was employed to determine the parameters of the model and compared it with a rectangular hyperbola photosynthesis model. The photosynthetic rates were measured at different intracellular CO2 concentrations () and photosynthetic photon flux density (PPFD) levels. SPAD values significantly decreased with lowered leaf position. The photosynthetic rates at the medium and basal leaves were lower compared with the upper leaves. FvCB model parameters, and , showed no significant difference between the medium and basal leaves. Estimated photosynthetic rates from derived parameters by the FvCB model demonstrated over 0.86 of R2 compared with measured data. The rectangular hyperbola model tended to overestimate or underestimate photosynthetic rates at high with high PPFD levels or low with high PPFD levels, respectively, at each leaf position. These results indicated that the parameters of the FvCB model with different leaf positions can be used to estimate the photosynthetic rate of lily.
Salinity stress is a major threat to plant growth and development, affecting crop yield and quality. This study investigated the effects of different salinity levels on photosynthetic responses and bulb growth of Lilium LA hybrid “‘Serrada’.” Plants were irrigated with 1 L of 0, 200, and 400 mM NaCl solutions every two weeks for 14 weeks in a greenhouse. At the end of the cultivation period, the substrate pH decreased, and electrical conductivity increased with increasing salinity. Regardless of salinity levels, the days to flowering and number of flowers were similar among treatments. In contrast, the flower width, plant height, number of leaves, and leaf area decreased with increasing NaCl concentrations. Although there were no differences in the photosystem II (PSII) operating efficiency and maximum quantum yield of PSII, net CO2 assimilation rates (An) and stomatal conductance (gs) were significantly reduced at 200 and 400 mM NaCl solutions compared to the control. At 400 mM NaCl solution, bulb diameter and weight significantly decreased at the end of the experiment. These results suggest that bulb growth inhibition could be attributed to limiting photosynthetic rate and stem growth. This finding suggests that salinity mitigation is necessary to maintain plant growth and photosynthetic capacity in lily cultivation on salt-affected soils.
The purpose of this study is to select various insect species for healing resources and develop a healing program in order to use insect as a healing agriculture. In this study, there are two kinds of breeding kit were developed, one for Gryllus bimaculatus and the other for Oxya chinensis sinuosa. Using these insect breeding kits, we conducted a survey of 60 children and the elderly. In the case of children, the results of the insect breeding satisfaction showed that 30.6% said that the sound of crickets was very good, and 11.1% said that it was good. In addition, the higher the child's awareness of insects, the higher the proportion of children who wanted to raise insects in the future. As a result of a survey of seniors, 45.2% do not like insects and 51.6% are not interested, meaning that most seniors are not very interested in insects. However, the emotions after breeding insects showed positive results, with 45.2% saying their personality became brighter, 48.4% reducing their anger, 48.4% relieving their irritation, 54.8% relieving loneliness, 58.1% feeling more responsible, and 51.6% developing intimacy.
본 연구에서는 액체감쇠역전회복(FLAIR) 시퀀스를 대체하였던 방법 중에 비교적 간단하면서 높은 재현성을 나타내었던 고신호 강도제거 원리를 MAGiC에 적용하여 MAGiC-FLAIR와 기존의 고속스핀에코-FLAIR 영상과 비교하여 고신호 강 도제거영상의 유용성과 임상적으로 유의미한 기준을 제시하고자 하였다. 연구방법은 MAGiC 적용 후 MAGiC-FLAIR와 MAGiC-고신호 강도제거 영상을 재구성하여, 기존의 고속스핀에코-FLAIR 영상과 각각 정성적, 정량적 평가를 비교하였 다. 정성평가결과 MAGiC-고신호 강도제거는 MAGiC-FLAIR 보다는 월등히 우수하며, 고속스핀에코-FLAIR와 유사한 결과를 보였고, 정량평가결과 MAGiC-고신호강도제거는 MAGiC-FLAIR보다 백질과 회백질 대조도는 더 우수할 뿐만 아 니라, 뇌척수액의 신호 억제도 우수한 결과를 나타냈다. Synthetic 영상을 통하여 획득한 다양한 대조도 영상 중 FLAIR의 부정확도를 고신호 강도제거기법을 적용한다면 진단적 가치를 개선하여 제공할 수 있을 것이다.
In order to establish symbiotic host-bacterial relationships, symbionts in insects evolved a mechanism to overcome host immune responses. Here we provide the resistance of symbiotic bacteria on the insect immune system. As a result, through the transposon mutagenesis, we found a salivary gland (SG) susceptible mutant. The disrupted gene was identified as nlpB involved in lipoprotein synthesis. The nlpB, bla double deletion mutant was sensitive to SG like nlpB-Tn5 inserted mutant. This mutant increases outer membrane permeability. It provides an explanation for SG susceptibility, because the antimicrobial peptide in SG would be able to translocate across the outer membrane more easily than in the wild type. These results indicate that nlpB and bla are likely to be important factors in terms of determining resistance against SG of Riptortus that is connected with the successful colonization of the Riptortus midgut.
목 적 : 자기공명검사실 내 자기장을 측정하여 방사선사의 직업적 자기장 노출 정도를 산출한 후 주기적인 자기장 노출에 따른 발현 증상과 증상발현에 직접적으로 작용하는 영향 인자를 알아보고자 한다.
대상 및 방법 : 자기공명검사실에서 근무하는 방사선사 37명을 대상으로 일일 개인 자기장 노출정도와 그에 따른 증상을 선정하여 직업적 노출 관련 설문지를 작성한 후 주기적인 자기장 노출 시 발현 증상과 영향인자를 조사하였다. 개인 노출정도는 Tesla meter(EPRI, 3-axis matrolab THM-1176 PDA)를 이용하여 P1(panel), P2(upper table), P3(middle table), P4(lower table) 위치에서 자기장을 측정하였고, 검사실 내 방사선사의 행동유형을 4가지(이전 검사 정리 및 다음검사 준비(A), 스캔 전(B), 조영제 주입(C), 스캔 후(D)로 나누어 분석한 후 일일 개인 자기장 노출정도를 산출하였다. 측정 장비는 서울 소재 U병원의 자기공명영상장치(Avanto 1.5T, Skyra 3.0T, Achieva 1.5T, Achieva 3.0T, Ingenia 3.0T)를 측정하였으며, 직업적 노출 관련 설문지는 선행논문을 토대로 작성하였고, 설문은 일원배치분산분석으로 검증하였다.
결 과 : 자기장은 Ingenia 3.0T(P1=8670G, P2=15500G, P3=630G, P4=70G)에서 가장 높게, Achieva 1.5T(P1=2370G, P2=5480G, P3=230G, P4=20G)에서 가장 낮게 측정되었다. 방사선사의 행동유형은 A일 경우 P1=5sec, P2=18sec, P3=65sec, P4=55sec의 시간이 소요되었으며, B일 경우 P1=1min 12sec, P2=10sec, P3=18sec, P4=12sec, C일 경우 P1=14sec, P2=8sec, P3=30sec, P4=5sec, D일 경우 P1=12sec, P2=8sec, P3=39sec, P4=10sec의 시간이 소요되었다. 위 결과를 이용하여 개인노출정도를 산출한 결과 하루 평균 8명의 환자를 검사한다는 가정 하에 일일 94.8분으로 노출되었다. 이를 바탕으로 작성한 직업적 노출 관련 설문 결과 영향 인자 중 성별은 유의한 차이가 없었으며, 연령별과 근무년수별은 유의한 차이가 있었다. 영향 인자에 따른 유의한 발현 증상을 살펴보면 연령별에서는 흐린 시야(f=3.499, p=0.027)가 유의하였고, 근무년수별에서는 어지러움(f=2.969, p=0.046), 잘 안들림(f=5.298, p=0.006), 섬광(f=4.019, p=0.017), 두통(f=8.078, p=0.001), 피로(f=8.135, p=0.01), 집중력문제(f=3.608, p=0.025), 머리가 아찔함(f=3.808, p=0.021), 근육경련(f=4.067, p=0.017) 등이 유의하게 나타났다(p>0.005).
결 론 : 기존 선행 연구들에 따르면 고 자기장에 노출 될 경우 여러 가지 발현 증상이 나타난다고 보고하였는데 본 연구에서도 개인 노출 정도가 누적됨에 따라 이와 유사한 증상을 보였다. 현재 직업적 자기장 노출에 관한 연구는 미비한 실정이며, 특히 가장 높은 자기장에 주기적으로 노출되는 방사선사에 대한 연구는 전무한 실정이다. 즉 이러한 영향이 어떠한 작용을 하는지 밝혀지지 않고 있으며 향후 어떠한 위해로 나타날지 알 수 없다. 따라서 방사선사의 직업적 자기장 노출에 관한 체계적인 연구가 필요할 것으로 사료된다.
Biological properties of antimicrobial peptides (AMPs) of hemimetabolous insect are poorly characterized in innate immunity field. To investigate the biochemical properties of hemimetabolous insect’s AMPs, we purified the pyrrhocoricin-like AMP from the hemolymph of Riptortus pedestris and then named as riptocin. We successfully determined the primary protein structure and its cDNA sequence. Interestingly, the determined cDNA revealed that riptocin precursor is composed of 12 repeating units of active riptocins, which implied that riptocin precursor might require to be processed to generate active riptocins by several unidentified processing enzymes. In order to characterize the bio-processing mechanisms of riptocin precursor, we generated the antibody against active riptocin. Using quantitative PCR and Western blot analyses, we showed that gene of riptocin was started to express from the fatbody after three hours post bacterial infection. To address our hypothesis that active riptocin is generated from riptocin precursor by several processing enzymes, we need to obtain the riptocin precursor. Currently, we are expressing the recombinant riptocin precursor using in vitro translation system. Meanwhile, we investigated whether naive hemolymph (naive HL), which may contain precursor riptocin, can generate active riptocin when riptocin precursor was co-incubation with bacteria-challenged hemolymph (active HL), which may contain all processing enzymes. Actually, when naive HL was incubated with active HL, antimicrobial activity was dramatically increased, suggesting that processing enzymes in active HL may induce processing of riptocin precursor to generate active riptocins.
The Riptortus-Burkholderia symbiosis is a newly emerging insect-bacterium symbiotic system. This symbiosis system has a good merit as an experimental model system to produce the non-symbiotic (apo) and symbiotic (sym) host insect. In recent reported papers, the symbionts play important biological roles for the host insects. Meanwhile, juvenile hormone (JH) is one of major hormone synthesized
corpora allata(CA) to control many physiology of insect. However, the study for cross-talk mechanism between symbionts and host hormones to control important physiological phenomenon of insects is almost none.
In this study, we found that Riptortus speed up adult emerging and increase egg laying on presence of symbiont Burkholderia. Also we found that hexamerin proteins, which were controlled the expression by JH, were accumulated in sym-Riptortus hemolymph compare with apo-Riptortus. According as combined results, we hypothesized that the gut symbiont Burkholderia can control JH titer to conclude out beneficial effects such as development and reproduction of R. pedestris.
To verify this hypothesis, we examined measurement of JH titer, expression of hexamerins as JH response genes and RNAi for hexamerin protein during whole Riptortus life on presence or absence of symbiont Burkholderia.
All results demonstrated that gut symbiont controlled JH titer of Riptortus. Controlled JH amount by symbiont Burkholderia in host midgut regulated hexamerin protein expression for speeding up adult emerging and increasing egg production.
The Riptortus (stinkbug) has a specialized symbiotic organ, M4 midgut, to harboring symbiont Burkholderia. M4 midgut is located in abdomen and surrounded with insect hemolymph. Recently our group demonstrated that symbiotic Burkholderia showed different physiology after adapting in M4 gut compare with in vitro cultured Burkholderia. And population of symbiotic Burkholderia in the M4 midgut is regulated by special organ. However, the molecular mechanism to prevent spreading and migrating symbiont bacteria to other host tissues from symbiotic organ is not clear. Therefore, we assumed that symbiont Burkholderia are susceptible to host humoral immunity after established infection in M4 midgut to prevent spreading and migrating into the other host tissues through Riptortus hemolymph.
To prove this assuming, we tested the susceptibility and survival rate of symbiont Burkholderia in hemolymph of Riptortus in vitro and in vivo. We also examined the susceptibility of symbiont Burkholderia using purified antimicrobial peptides (AMP), pyrrhocoricin-like, thanatin-like and defensin-like AMPs. Finally, we tested inducing ability for AMPs by systemic infection of symbiotic Burkholderia. Gene expression of purified AMPs was not different after systemic infection of both symbiont and in vitro cultured Burkholderia. Surprisingly, in vitro cultured Burkholderia resisted on bacteria injected hemolymph and purified AMPs but symbiont Burkholderia were highly susceptible in bacteria injected hemolymph and purified AMP. These results suggest that symbiont Burkholderia can't survive in the hemolymph after escaping symbiotic organ. Moreover, humoral immunity of host Riptortus is important to prevent spreading and migrating symbiont Burkholderia into the other host tissue or organ from symbiotic organ.
The current status of insect pollinator use was surveyed. Honeybee was larger than mason bee and bumblebee in average use area per farm household at kinds of insect pollinator. Insect pollinator was used at 19 crops. Among them, tomato was the most used crop, which was 44.9%, and in order to apple 26.7%, strawberry 13.1%, red-pepper 7.7% and watermelon 3.7%. In the use of insect pollinators, bumblebee, which was 56.9%, was higher than honeybee (31.3%) and mason bee (11.8%). The most farmers were a positive intention except for 1.5% of farmer in the use of insect pollinator for crop pollination. The best advantage in insect pollinator use was improvement of seed setting percentage, which was 28.3% and the worst problem was low activity at bad weather, which was 25.8%. And also, 97% of farmers have an intention to use continuously insect pollinator.
Background : This study was carried out to investigate the cytotoxicity in 9 extracts from 8 medicinal plants, such as leaf extract of Lonicera maackii (Llm), leaf extract of Platycarya strobilacea (Lps), flower extract of Fagopyrum dibortryis (Fdf), stem extract of Physostegia virginiana (Spv), root extract of Allium senescence (Ras), aerial part extract of Allium schoenoprasum (Aas), aerial part extract of Artemisia japonica var. manshurica (Aaj), stem extract of Caryopteris incana (Sci), and leaf extract of Caryopteris incana (Lci), on human cancer cell lines. Methods and Results : Dried plant extracts were granted from National Institute of Horticultural and Herbal Sciences. The extracts of each plant were dissolved in DMSO and stored in deep freeze at –20℃. The cell viabilities were examined by MTT assay. On SK-OV-3 cell line, Lps, Aas, Sci ans Lci showed dose-dependent cytotoxic effect. On A549 cell line, almost samples show dose-dependent cytotoxic effect, but especially Aaj showed relatively high cytotoxic effect. In case of HCT-15 cell line, Llm and Aas showed relatively high cytotoxic effect. Conclusion : These results suggested that Lonicera maackii, Platycarya strobilacea, Fagopyrum dibortryis, Physostegia virginiana, Allium senescence, Allium schoenoprasum, Artemisia japonica var. manshurica, and Caryopteris incana can be utilized as potential sources of anticancer agent due to their cytotoxicity.
Background : As a part of ongoing research to elucidate and characterize anti-inflammatory nutraceuticals, six kinds of plant extracts (aerial part of Nepeta cataria, leaves of Lonicera maackii, leaves of Platycarya strobilacea, flower of Fagopyrum dibotrys, flowers and fruits of Solanum nigrum, stem of Physostegia virginiana) were tested for their ability to suppress inflammation. The anti-inflammatory has been studied in lipopolysaccharide (LPS)-stimulated RAW264.7 cells which cells synthesized nitric oxide (NO) from L-arginine by nitric oxide synthase (NOS). In this study, NO synthesis inhibitory activity of six kinds of plant extracts on LPS-stimulated RAW 264.7 mouse macrophages was evaluated. Methods and Results : Six kinds of plant extracts were parceled out from RDA (Rural Development Administration). RAW 264.7 cells (1.5×105 cells/well) were seeded onto 96-well plates with DMEM media containing 10% FBS and 1% antibiotics. The cells were pretreated with the extracts and LPS-stimulated cells for 24 h. Cellular NO production was stimulated by adding 1 μg/mL of LPS. After incubation, Griess reagent was used to determine NO production. Absorbance was measured at 520 nm by microplate reader. NO synthesis inhibitory activity potential of these extracts was evaluated by assessing NO production by LPS-stimulated RAW 264.7 cells in the presence. As a result, inhibition rate of NO production was about 40% of L. maackii, 33% of F. dibotrys, 23% of P. strobilacea and 17% of P. virginiana. Meanwhile, there was no significant results in aerial part of N. cataria and flowers and fruits of S. nigrum. Conclusion : From the above results, we be able to confirm that leaves of L. maackii and flower of F. dibotrys appeared dose-dependent NO synthesis inhibitory activity and leaves of P. strobilacea appeared NO synthesis inhibitory activity in low-concentration. As screening NO synthesis inhibition of six extracts, they may be a good candidate for delaying the progression of human inflammatory diseases and warrants further studies.
The objective of this study was to rapidly evaluate fatty acids in a collection of foxtail millet (Setaria italica (L.) P. Beauv) of different origins so that this information could be disseminated to breeders to advance germplasm use and breeding. To develop the calibration equations for rapid and nondestructive evaluation of fatty acid content, near-infrared reflectance spectroscopy (NIRs) spectra (1104-2494 nm) of samples ground into flour (n=100) were obtained using a dispersive spectrometer. A modified partial least-squares model was developed to predict each component. For foxtail millet germplasm, our models returned coefficients of determination (R2) of 0.91, 0.89, 0.98 and 0.98 for strearic acid, oleic acid, linoleic acid, and total fatty acids, respectively. The prediction of the external validation set (n=10) showed significant correlation between references values and NIRs values (r2=0.97, 0.91, 0.99 for oleic, linoleic, and total fatty acids, respectively). Standard deviation/standard error of cross-validation (SD/SECV) values were greater than 3 (3.11, 5.45, and 7.50 for oleic, linoleic, and total fatty acids, respectively). These results indicate that these NIRs equations are functional for the mass screening and rapid quantification of the oleic, linolenic, and total fatty acids characterizing foxtail millet germplasm. Among the samples, IT153491 showed an especially high content of fatty acids (84.06 mg g-1), whereas IT188096 had a very low content (29.92 mg g-1).