The recent release of contaminated water from the Fukushima Daiichi Nuclear Power Plant highlights the need for accurate tritium measurement, particularly near the minimum detectable activity (MDA) of 5 Bq·L−1 set by South Korea’s Nuclear Safety and Security Commission. This study aims to improve low-level tritium measurement accuracy by optimizing the region of interest (ROI) for quench curve determination. These adjustments are crucial for separating tritium signals from background noise. Quench standards were prepared and measured using a liquid scintillation counter (LSC). Three ROIs were analyzed to assess the impact of channel selection on measurement precision: A 20-148 channel range optimized via figure of merit (FOM) analysis, a 20-250 channel range covering tritium’s full beta spectrum, and a broad 1-1024 channel range. Quench curves were obtained by fitting the counting efficiency of each ROI to the quench standards. Tritium samples with six different activity levels were prepared, and their radioactivity was calculated using the quench curves. Selecting appropriate ROIs for quench curve determination is critical for measuring low-concentration tritium accurately. This approach reduces uncertainty and emphasizes reliable methods to improve the precision and consistency of tritium measurements.
Bee traffic at the hive entrance can be used as an important indicator of foraging activity. We investigated patterns of honeybees and bumblebees near their hives as a basis for calculating bee traffic using the image deep learning. The flight pattern near the hive differed significantly according to bee at entering and leaving the hive. Honeybees mainly showed flight that changed flight direction more than once (69.5%), whereas bumblebees mainly performed straight flight (48.7%) or had a single turn (36.5%) in flight. When bees entered the hive, honeybees primarily showed one-turn or two-turn flight patterns(88.5%), and bumblebees showed a one-turn flight pattern (48.0%). In contrast, when leaving the hive, honeybees primarily showed a straight flight pattern (63.0%), and bumblebees primarily showed a straight or one-turn pattern (90.5%). There was a significant difference in flight speed according to the flight pattern. The speed of straight flight (0.89±0.47 m/s) was 1.5 to 2.1 times faster than flight where direction changed. Therefore, our results can help determine the capturing and recognizing the flying image of bees when calculating bee traffic by image deep learning.
Entomopathogenic fungi serve as eco-friendly alternatives to chemical pesticides. In this study, we investigate the interactions between mosquitoes and Metarhizium anisopliae JEF-157, which showed high insecticidal activity against mosquitoes, by RNA-seq analysis. RNA from mosquitoes was extracted at the median lethal time to identify changes in gene expression. The results showed 580 genes were up-regulated, while 336 genes were down-regulated in fungal treated mosquitoes. Up-regulated genes were related to metabolic and cellular processes such as cytochrome P450, DNA replication, and apoptosis. Down-regulated genes were involved in metabolism pathways such as lysosome, starch and sucrose metabolism, and fatty acid biosynthesis. These results are crucial for elucidating the mechanisms of fungal invasion and interaction in insects, providing insights for future pest management strategies.
Entomopathogenic fungi have been studied to control insect pests as an alternative to chemical insecticides. However, all fungi haven't a high virulence against pests. In this study, we compared the biological characteristics of Metarhizium anisopliae strains. First, we selected four M. anisopliae strains and compared the thermotolerance, conidial productivity, and virulence. For the thermotolerance test, conidial suspensions were exposed to 0, 30, 60, and 90 min at 45 °C. As a result, the conidial germination rates were over 95% when exposed for 0 min but, were 64, 37.7, 6, and 3% when exposed for 30 min at 45°C, respectively. To compare conidial productivity, 200g of millet were used and inoculated with a conidial suspension of 1 ml (1×107 conidia/ml). Conidial productivity was investigated after 14 days. As a result of conducting a virulence test against mealworms using a spray method, differences in virulence between strains were confirmed.
A combination of a series of epoxy coatings filled with octadecylamine (ODA)-modified graphene oxide (mGO) or commercial exfoliated graphite nanoplatelets (xGnP) was developed to boost the anticorrosion performances of mild steel substrates in acidic and NaCl aqueous solutions. The xGnP and mGO were applied successfully as fillers for the preparation of layer by layer (LBL) xGnP or mGO/epoxy coatings, respectively, which were coated on the clean steel surfaces to form LBLassembled layers. The LBL-assembled xGnP or mGO/epoxy coating-coated steel substrates exhibit excellent anticorrosion performances. The corrosion potentials (Ecorr) of xGnP-1/xGnP-2/3 and mGO-1/mGO-2/3 display at − 193 and − 150 mV, respectively, while Ecorr of the bare steel shows at − 871 mV of immersion in the 3.5 wt% NaCl solution. The most positive Ecorr values are obtained for xGnP-1/2/3 (− 117 mV) and mGO-1/2/3 (− 66 mV), showing the best anticorrosion performances compared to the bare steel (− 404 mV) in 17 wt% HCl solution.
털부처꽃(Lythrum salicaria L.)은 전국에 분포하는 다년생 초본식물로 척박하고 습한 지역을 포함한 다양한 환경에서 잘 자라는 것으로 알려져 있다. 따라서 하천변, 척박지에서 정원 용, 화훼용 및 관상용 식물로 이용이 가능하다. 본 연구는 털 부처꽃의 적정 육묘 조건(토양종류, 플러그 트레이 셀 크기,파종립수, 액비농도 및 차광)을 조사하였다. 대조구(원예상토) 에서 재배된 유묘의 생육이 가장 우수하였다. 반면 피트모스 와 펄라이트의 혼합용토는 육묘기간이 지속되면서 생육수치 가 감소하는 경향을 나타냈다. 셀 크기는 용적이 가장 큰 162 셀에서 재배된 유묘의 생육이 우수하였으나, 200셀과 288셀에 서 자란 묘도 건강했다. 한편 유묘의 결주발생을 고려하면 셀 당 2립을 파종하는 것이 적합하였다. 액비 처리는 유묘의 생 육을 촉진하였다. 특히 Hyponex 1000배는 초장, 줄기직경, 엽수, 마디수, 근장, 지상부 생체중 및 지하부 생체중을 증가 시켰다. 또한 유묘의 생육은 55% 차광 하에서 우수하였다. 따 라서 털부처꽃의 가장 효과적인 생육조건은 원예상토가 충진 된 288셀 플러그 트레이에 셀 당 2립을 파종하고 Hyponex 1000배를 시비하면서 55% 차광 하에서 재배하는 것이었다.