검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        1.
        2016.02 KCI 등재 서비스 종료(열람 제한)
        To predict annual energy production (AEP) accurately in the wind farm where located in Seongsan, Jeju Island, Equivalent wind speed (EQ) which can consider vertical wind shear well than Hub height wind speed (HB) is calculated. AEP is produced by CFD model WindSim from National wind resource map. EQ shows a tendency to be underestimated about 2.7% (0.21 m/s) than HB. The difference becomes to be large at nighttime when wind shear is large. EQ can be also affected by atmospheric stability so that is classified by wind shear exponent (). AEP is increased by 11% when atmosphere becomes to be stabilized ( > 0.2) than it is convective ( < 0.1). However, it is found that extreme wind shear ( > 0.3) is hazardous for power generation. This results represent that AEP calculated by EQ can provide improved accuracy to short-term wind power forecast and wind resource assessment.
        2.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Emissions from aircraft have impacts on the air pollution of airport and the surrounding area. There are methods of emissions calculated as Tier 1, Tier2, Tier 3A and Tier 3B. Thus, this study investigated emissions from aircraft at the Gimhae International Airport using EDMS(Emissions & Dispersion Modeling System) program. Results of estimation from aviation emissions, Tier 3B considering all parts which can occur at the airport has the largest amount emissions. In order to understand the relation between aviation emissions and distribution of ozone concentration over airport area, numerical evaluation were carried out. Although the difference of surface ozone distribution between numerical assessment with and without aviation emissions was little, effects of air pollution at airport area from aviation emissions of NOx and VOCs.
        3.
        2014.11 KCI 등재 서비스 종료(열람 제한)
        In order to decide the location of appropriate onshore wind farm with higher potential wind energy, several decision processes using Geographic Information System (GIS) including Digital Elevation Map (DEM) were proposed and we also estimated the wind resources through the proposed decision process. Decision process consists with three steps. First step is excluding inappropriate location geographically using DEM data including SRTM (Shuttle Radar Topography Mission) terrain data, landslide, land-use, roadway, and forest road data. And the second step of decision process is consideration of the difficulty caused by the natural environmental problem. This step is carried out using ECVAM (Environmental Conservation Value Assessment Map) data. And final step is determination of the most suitable location through the Moving Suitability Identification Method (MSIM) based on the moving potentially estimated wind resources area. Proposed decision process was applied over the Korean Peninsula. Wind resource potential estimated by the first and the second step is cases shows 35.09 GW and 7.17 GW, respectively, and the total evaluated energy from the all proposed step were 0.43 GW and 1.87 GW for the 3 ㎞and 1.5 ㎞geographical grid size, respectively.
        4.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        To clarify the characteristics of TKE (Turbulence Kinetic Energy) variation for offshore wind power development, several numerical experiments using WRF were carried out in three different coastal area of the Korean Peninsula. Buoyancy, mechanical and shear production term of the TKE budget are fundamental elements in the production or dissipation of turbulence. Turbulent kinetic energy of the south coast region was higher than in other sea areas due to the higher sea surface temperature and strong wind speed. In south coast region, strong wind passing through the Korea Strait is caused by channelling effect of the terrain of the Geoje Island. Although wind speed is weak in east coast, because of large difference in wind speed between the upper and lower layer, the development of mechanical turbulence tend to be predominant. Since lower sea surface temperature and smaller wind shear were detected in west coastal region, the possibility of turbulence production not so great in comparison with other regions. The understanding of the characteristics of turbulence in three different coastal region can be reduced the uncertainty of offshore wind construction.
        5.
        2014.03 KCI 등재 서비스 종료(열람 제한)
        To estimate the benefit of high-resolution meteorological data for building energy estimation, a building energy analysis has been conducted over Busan metropolitan areas. The heating and cooling load has been calculated at seven observational sites by using temperature, wind and relative humidity data provided by WRF model combined with the inner building data produced by American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE). The building energy shows differences 2-3% in winter and 10-30% in summer depending on locations. This result implicates that high spatiotemporal resolution of meteorological model data is significantly important for building energy analysis.
        6.
        2013.02 KCI 등재 서비스 종료(열람 제한)
        In order to clarify the impact of wildfire and its thermal forcing on atmospheric wind and temperature patterns, several numerical experiments were carried out using three dimensional atmospheric dynamic model WRF with wildfire parametrization module SFIRE. Since wind can accelerate fire spread speed, the moving speed of fireline is faster than its initial values, and the fireline tends to move the northeast, because of the wind direction and absolute vorticity conservation law associated with driving force induced by terrain. In comparison with non-fire case, the hydraulic jump that often occurs over downwind side of mountain became weak due to huge heat flux originated by surface wildfire and wind pattern over downwind side of mountain tends to vary asymmetrically with time passing. Therefore temporal variation of wind pattern should be catched to prevent the risk of widfire.
        7.
        2010.12 KCI 등재 서비스 종료(열람 제한)
        In order to clarify the impact of regional warming on the meteorological field and air quality over southeastern part of Korean Peninsula, several numerical experiment were carried out. Numerical models used in this study are WRF for the estimate the meteorological elements and CMAQ for assessment of ozone concentration. According to the global warming impact, initial air temperature were changed and its warming rate reach at 2 degree which was based on the global warming scenarios provided by IPCC. The experiments considering the global warming at initial stage were presented as case T_UP. Air temperature over inland area during night time for case T_UP is higher than that for Base case. During time since the higher temperature over inland area is maintained during daytime more intensified sea breeze should be induced and also decrease the air temperature in vicinity of coast area. In case of T_UP, high level concentrations ozone distribution area was narrowed and their disappearance were faster after 1800LST. As a results, wind and temperature fields due to the global warming at initial stage mainly results in the pattern of ozone concentration and its temporal variation at South-Eastern Part of the Korean Peninsula.
        8.
        2010.02 KCI 등재 서비스 종료(열람 제한)
        Accurate simulation of the meteorological field is very important to assess the wind resources. Some researchers showed that sea surface temperature (SST) plays a leading role on the local meterological simulation. New Generation Sea Surface Temperature (NGSST), Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA), and Real-Time Global Sea Surface Temperature (RTG SST) have different spatial distribution near the coast and OSTIA shows the best accuracy compared with buoy data in the southeastern coast of the Korean Peninsula. Those SST products are used to initialize the Weather Research and Forecasting (WRF) Model for November 13-23 2008. The simulation of OSTIA shows better result in comparison with NGSST and RTG SST. NGSST shows a large difference with OSTIA in horizontal and vertical wind fields during the weak synoptic condition, but wind power density shows a large difference during strong synoptic condition. RTG SST shows the similar patterns but smaller the magnitude and the extent.
        9.
        2009.08 KCI 등재 서비스 종료(열람 제한)
        In order to make sure the impact of spatial resolution of wind energy map on the estimation of wind power density in the Korean Peninsula, the comparison studies on the characteristics of wind energy map with three different spatial resolutions were carried out. Numerical model used in the establishment of wind map is MM5 (5th generation Mesoscale Model) with RDAPS (Regional Data Assimilation and Prediction System) as initial and boundary data. Analyzed Period are four months (March, August, October, and December), which are representative of four seasons. Since high spatial resolution of wind map make the undulation of topography be clear, wind pattern in high resolution wind map is correspond well with topography pattern and maximum value of wind speed is also increase. Indication of island and mountains in wind energy map depends on the its spatial resolution, so wind patterns in Heuksan island and Jiri mountains are clearly different in high and low resolutions. And area averaged power density can be changed by estimation method of wind speed for unit area in the numerical model and by treatment of air density. Therefore the studiable resolution for the topography should be evaluated and set before the estimation of wind resources in the Korean Peninsula.
        10.
        2009.08 KCI 등재 서비스 종료(열람 제한)
        As a part of effort to establish an offshore wind resource assessment system of the Korean Peninsula, a numeric wind simulation using mesoscale climate model MM5 and a spatial distribution of offshore wind extracted from SAR remote-sensing satellite image is compared and analyzed. According to the analyzed results, the numeric wind simulation is found to have wind speed over predication tendency at the coastal sea area. Therefore, it is determined that a high-resolution wind simulation is required for complicated coastal landforms. The two methods are verified as useful ways to identify the spatial distribution of offshore wind by mutual complementation and if the meteor-statistical comparative analysis is performed in the future using adequate number of satellite images, it is expected to derive a general methodology enabling systematic validation and correction of the numeric wind simulation.
        11.
        2003.01 KCI 등재 서비스 종료(열람 제한)
        With increasing population densities in cities, underground facilities and entertainment locations are proliferating at a rapid pace in efforts to maximize the use of land. The purpose of this study is to evaluate CO concentration level of subway stations having underground platforms in Busan Metropolitan City, from September to November 2000, over seven times. The places of inquiry include Yonsan-dong station, Somyon station, Busan station, Nampo-dong station and Dusil station. The samplings were conducted at three points of each station, i.e. gates, ticket gates, and platforms. The component of CO concentration is the main elements of indoor air quality evaluation. The total concentrations and average concentrations of CO were the higher at the Somyon station. The distribution of CO concentrations at each station, generally was higher at gate than ticket gates and platforms. The I/O ratios(I-platforms, O-gates) were expressed highly than 1 at the Yonsan-dong station, Busan station, Nampo-dong station and were lower than 1 at the others.
        12.
        2002.12 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study is to estimate wet deposition flux and to investigate wet deposition characteristics by using the ADOM model. Wet deposition flux of highly reactive SO2 is estimated by applying observed meteorological parameters and concentrations of chemical species to the ADOM model. Wet deposition is largely dependent on large scale precipitation and cloud thickness. Wet deposition flux of sulfate depends on SO2 oxidation in clouds. When large amount of SO2 is converted to sulfate, deposition flux of sulfate increases, but wet deposition flux of SO2 is small. On the whole, the pattern of sulfate wet deposition flux agrees with the typical pattern of sulfate wet deposition that is high in the summer(July) and low in the winter(January).
        14.
        2002.03 KCI 등재 서비스 종료(열람 제한)
        The purpose of this study is designed to estimate the air quality of subway stations that have the underground platforms in Pusan Metropolitan City, from September to November 2000, over seventimes. The subjects include Yonsan-dong station, Somyon station, Pusan station, Nampo-dong station, and Tushil station. The samplings were conducted at three points of each station, i.e. gates, ticket gates, and platforms. The major materials for analysis were CO, NO, NO2, and O3. The experiment was conducted at 7:00 pm with KIMOTO HS-7 Handy sampler and Tedlar Bag of SKC INC(U.S.A). In order to more fully understand station environments, we also measured temperature at each point. The results showed that O3 average concentration at Yonsan-dong station was higher than others with 38~51 ppb. The average concentration of NO was high at ticket gate and platform at Somyon station(119 ppb, 122 ppb), Nampo-dong station(102 ppb, 100 ppb). These results show that the air pollution of stations with underground shopping malls was higher than others. At Somyon station having a junction station, NO and NO2 concentration level of platform-2(noncrowded) was higher than platform-1(crowded). This is most likely due to the accumulation of air pollutants and inadequate ventilation systems.
        15.
        1998.06 KCI 등재 서비스 종료(열람 제한)
        Effects of uniform flow on a two-dimensional mesoscale horizontal convection were investigated by using the vorticity and thermodynamic equations. For this purpose, We simulated properties of a thermal convection in a stably stratified Boussinesq fluid caused by partial heating at the center of a lower boundary. If we don`t consider effects of the uniform flow, the convection takes the form of axisymmetric with respect to the z-axis. But when uniform flow is strong, velocity field and temperature field consist of a single cell structure which spreads upstream side of the partial heating area. The flow pattern for strong uniform flows takes the form of positive temperature near the ground and negative temperature perturbation aloft over the partial heating area, and downward motion directly over the upwind portion of the partial heating area and upward motion on the downstream side. The downstream edge of the upstream cell is shifted in the downstream direction with the increase of uniform flow almost linearly.
        16.
        1998.04 KCI 등재 서비스 종료(열람 제한)
        This study is concerned with properties of a thermal convection in a stably stratified Boussinesq fluid caused by partial heating at the lower boundary. For this purpose, two-dimensional, nonrotating system was employed. If the heating is very strong, convection takes the form of a turbulent plume. Otherwise, remains laminar. If the partial heating at the bottom boundary is symmetric, the convection takes the form of axisymmetric with respect to the z-axis. but heating form is not so significant as to alter the main features of the horizontal convection. The convective motion consists of two-cell with the convergence in the lower layer at the center of the partial heating area. The temperature perturbation is characterized by the temperature `Cross-Over` over the partial heating area. These features are cleared according to the increase of temperature difference between the center and side part of the bottom boundary.
        17.
        1997.10 KCI 등재 서비스 종료(열람 제한)
        To predict diffusion and movement of air pollutants in coastal urban region a numerical simulation shoud be consider atmospheric flow field with land-sea breeze, mountain-valley wind and urban effects. In this study we used Lagrangian particle dispersion method in the atmospheric flow field of Pusan coastal region to depict diffusion and movement of the pollutants emited from particular sources and employed two grid system, one for large scale calculating region with the coarse mesh grid (CMG) and the other for the small region with the fine mesh grid (FMG). It was found that the dispersion pattern of the pollutants followed local circulation system in coastal urban area and while air pollutants exhausted from Sasang moved into Baekyang and Jang moutain, air pollutants from Janglim moved into Hwameong-dong region.
        18.
        1997.08 KCI 등재 서비스 종료(열람 제한)
        The Characteristics of atmospheric flow and dispersion of air pollutants in the mountainous coastal area were studied using three-dimensional model by the combination of land/sea breezes and transport. It was then applied to Pusan city. As the urban area considered in this study is located in a mountainous coastal area, the atmospheric flow is strongly affected by the land/sea breezes and mountain/valley winds. The typical effects of land/sea breezes on the dispersion and the characteristics of pollutants movement in the region were analysed. The model has been proved to be an useful tool to pridict real time air pollutants transport as shown by the results of application studies in Pusan, Korea which is an urbanized coastal area with mountainous topography. It was found that the pollutants are differently transported and concentrated as going inland by the influence of the sea breeze with topographic changes. By comparing the pollutants concentrations of the simulated results with those of the observational results, it is shown that simulated results in this study are in qualitative agreement with observational ones.
        19.
        1997.08 KCI 등재 서비스 종료(열람 제한)
        In the Atmosphere under the various physical and chemical condition different chemical reactions occur and there are a number of air pollutants which are generated by photochemical reaction by absorbing solar energy. Therefor various testing simulation was done as foundation work to develop the numerical model for the prediction of concentration of air pollutants. It was shown change of major air pollutants concentration in according to variation of photodissociation speed constant, K_1 and initial condition of air pollutants concentration which plays major role in photochemical reaction. The photochemical reaction model which was used in this study is found to be useful for understanding relationship among the concentration of reacting air pollutants and the prediction of concentration of air pollutants in urban atmosphere
        20.
        1997.08 KCI 등재 서비스 종료(열람 제한)
        Numerical simulations of photochemical air pollution (CBM: Carbon-Bond Mechanism) under a theoretical three-dimensional local wind system are carried to clarify the fundamental characteristics of the effects of local wind on photochemical air pollution. According to the AWS data of Pusan coastal area and KMA, the surface wind of Pusan during summertime showed a very remarkable land and sea breeze circulation. The ozone concentration distribution using local wind model showed that high ozone concentration zone near coastal area moved toward inland in the afternoon. This change implies a sea breeze increases the ozone concentration, but a land breeze decreases it in Pusan coastal area
        1 2