The stabilization technology for the damaged spent fuel is being developed to process the damaged fuel into sound pellet suitable for dry re-fabrication. It requires several treatments including oxidative decladding followed by reduction treatment for oxidized powder closely related to the quality of oxidized powders for pellet fabrication. For the development of operating condition for the reduction treatment, in this study, we evaluated the effect of air-cylinder based vertical shaking previously applied to oxidative decladding on powder reduction. For U3O8 of 50-100 g, the reduction test were applied with and without vertical shaking at 700°C under reduction atmosphere (Ar + 4%H2) and the concentration of hydrogen in effluent was measured to evaluate the reduction reaction. It was found that the vertical shaking system has allowed the reaction time of 50 g and 100 g U3O8 reduced by 33% compared to the test in static mode. Based on XRD analysis, the better crystallinity of the products was also achieved.
The damaged spent fuel rods must be stabilized by encapsulation or dry re-fabrication technologies before geological disposal. For applying the dry re-fabrication technology, we manufactured a vertical type furnace to perform the fuel material recovery from damaged fuel rods by oxidative decladding technology. As driving forces to accelerate oxidative decladding rate, magnetic vibration and pulse hammering generated by a pneumatic cylinder were used in this study. The oxidative decladding efficiency and recovery rate of fuel oxide powder with rod-cut length, oxidation temperature and time, oxygen concentration, and gas mixtures were investigated using simfuel rod-cuts in a vertical furnace for fuel material recovery and powder quality improvement. The oxidative decladding was performed for 2.5-10 h as following operation parameters: simfuel rod-cut length of 50-200 mm, oxidative temperature from 450 to 580°C, oxygen concentration of 49.5 or 75.6%, and gas mixtures in O2/Ar or O2/N2. In magnetic vibration, oxidative decladding was progressed only at bottom portion of fuel rodcut. Whereas, oxidative decladding in pulse hammering was occurred at both top and bottom portions of fuel-rod. In pulse hammering method, the oxidative decladding conditions to declad rod-cuts of 50- 200 mm in length were established to achieve both decladding efficiency of ~100% and fuel material recovery rate of > 99%. These conditions were as follows: oxidation temperature and time at 500°C and 2.5-10 h, oxygen concentration at 75.6% under O2/N2 gas mixtures. As operation conditions for a pneumatic cylinder, stroking, actuating, and waiting times were 0.5, 3, and 12 s.
Ag-containing aluminosilicate sorbents capable of capturing iodine were prepared by sol-gelation from Na, Al, and Si alkoxides using co-solvent exchange, Ag/Na ion exchange, solvent exchange, and ambient-pressure drying. The Na+AlSi-OH gel was prepared using sodium methoxide (NaOMe): aluminum tri-sec-butoxide (Al(OsBu)3): tetraethyl orthosilicate (TEOS) molar ratios of 1.05:1:1, 1.3:1.1:1, 1.5:1.3:1. The solvent effect on textural properties such as Brunauer-Emmett-Teller (BET) surface areas and pore size distributions and Ag0 particle sizes was investigated using water with high surface tension, isopropanol and n-heptane with low surface tension. The BET surface area, average pore size, and cumulative pore volume for sorbents strongly increased with decreasing surface tension of solvents and increasing Al/Si atomic ratios. In addition, Ag0 particle sizes increased with decreasing surface tension of solvents.
The damaged spent fuel rods must be stabilized by encapsulation or dry re-fabrication technologies before geological disposal. For applying the dry re-fabrication technology, we manufactured a vertical type furnace to perform both fuel material recovery from damaged fuel rods by oxidative decladding and sinterability improvement of fuel powder by repetition of oxidative and reaction treatment. A horizontal type furnace provides only a diffusion-controlled reaction resulting in longer reaction time and decreasing amount of powder for oxidation and reduction, whereas a vertical type furnace with a submerged gas distributor gives rapid reaction due to flowing gas-solid contact by fluidization. For observation of fluidization behaviors of uranium oxides at room temperature, fluidized column was prepared with transparent cylindrical tube, pressure transmitter and gas flow meter. Number of size of orifice holes was determined by equations in Fluidization Engineering [D.Kunii, O. Levenspiel]. Before uranium oxide test, as surrogates, WO2 (10.8 g/cm3) and Ta2O5 (8.2 g/cm3) powder similar to density of UO2 (10.96 g/cm3) and U3O8 (8.3 g/cm3), respectively were used to achieve fluidization operation conditions in the region from minimum to expanded fluidization. Fluidization behaviors and pressure drop of powder bed was observed according to operation parameters such as gas velocity, number and size of orifice holes, and powder amount.
Recently, food delivery apps are seeing rapid growth into a market worth 1 trillion won under a simple but unique business model of connecting nearby restaurants with consumers via smartphone. Though basic similarities with social commerce exists in aspects such as mail-order sales intermediaries, startups, types of services and market competition structure, food delivery apps resemble social commerce in many ways in that they use excessive marketing to secure market dominance, causing a spike in consumer complaints. If the excessive marketing and increase in customer complaints are not rectified, the food delivery app could also see rapid decline as it gradually grows distant from consumers, just like social commerce. Accordingly, this study will identify the factors consumers recognize as important for continuous use vis-a-vis social commerce and food delivery apps to perform an empirical analysis on what areas need improvement. After deriving the four upper factors of product, information system and service along with eight sub-factors by referring to existing literature, the areas with opportunity for improvement were derived through satisfaction level and relative importance evaluation. The results of this study present a strategic direction for maintaining customers of social commerce and food delivery apps.
Muscle satellite cell (SC) is responsible for postnatal muscle growth, repair, and regeneration. Satellite cell is an im-portant source of multi-potent stem cell process and differentiation into adipogenic, myogenic, and osteoblastogenic. The objective of this study was to identify alter of transcriptome during differentiation in porcine satellite cell and to elevated transcriptome at different stages of postnatal development to gain insight into the differences in differ-entiated PSC. We used RNA-seq technique to investigate the transcriptomes during differentiation in pig muscle. Sequence reads were obtained from Illumina HiSeq2000. Differentially expressed genes (DEG) were detected by EdgeR. Gene ontology (GO) terms are powerful tool for unification among representation genes or products. In study of GO biological terms, functional annotation clustering involved in cell cycle, apoptosis, extracellular matrix, phosphoryla- tion, proteolysis, and cell signaling in differences stage. Taken together, these results would be contributed to a better understanding of muscle biology and processes underlying differentiation. Our results suggest that the source of DEGs could be better understanding of the mechanism of muscle differentiation and transdifferentiation.
Satellite cells were derived from muscular tissue in postnatal pig. Satellite cell is an important to growth and development in animal tissues or organs. However, the progress underlying induced differentiation is not clear. The aim of this study was to evaluate the morphologic and the transcriptome changes in porcine satellite cell (PSC) treated with insulin, rosiglitazone, or dexamethasone respectively. PSC was obtained from postnatal muscle tissue. In study 1, for study the effect of insulin and FBS on the differentiated satellite cells, cells were cultured at absence or presence of insulin treated with FBS. Total RNA was extracted for determining the expression levels of myo-genic PAX3, PAX7, Myf5, MyoD, and myogenin genes by real-time PCR. Myogenic genes decreased expression levels of mRNA in treated with insulin. In study 2, in order to clarify the relationship between rosiglitazone and lipid in differentiated satellite cells, we further examined the effect of FBS on lipid accumulation in the presence or absence of the rosiglitazone and lipid. Significant differences were observed between rosiglitazone and lipid by FBS. The mRNA of FABP4 and PPARγ increased in rosiglitazone treatment. In study 3, we examined the effect of dexame-thasone on osteogenic differentiation in PSC. The mRNA was increased osteoblasotgenic ALP and ON genes treated with dexamethasone in 2% FBS. Dexamethasone induces osteoblastogenesis in differentiated PSC. Taken together, in differentiated PSCs, FABP4 and PPARγ increased to rosiglitazone. Whereas, no differences to FBS and lipid. These results were not comparable with previous reports. Our results suggest that adipogenic, myogenic, and osteoblasto-genic could be isolated from porcine skeletal muscle, and identify culture conditions which optimize proliferation and differentiation formation of PSC.
Muscular satellite cell (SC), which is stem cell of postnatal pig, is an important for study of differentiation into adipogenesis, myogenesis, and osteoblastogenesis. In this study, we isolated and examined from pig muscle tissue to determine capacity in proliferate, differentiate, and expression of various genes. Porcine satellite cells (PSC) were isolated from semimembranosus (SM) muscles of 90∼100 days old pigs according to standard conditions. The cell proliferation increased in multi-potent cell by Masson’s, oil red O, and Alizarin red staining respectively. We per-formed the expression levels of differentiation related genes using real-time PCR. We found that the differentiation into adipocyte increased expression levels of both fatty acid binding protein 4 (FABP4) and peroxisome proliferator- acti-vated receptor gamma (PPARγ) genes (p<0.01). Myocyte increased the expression levels of the myosin heavy chain (MHC), myogenic factor 5 (Myf5), myogenic regulatory factor (MyoD), and Myogenic factor 4 (myogenin) (p<0.01). Osteo-blast increased the expression levels of alkaline phosphatase (ALP) (p<0.01). Finally, porcine satellite cells were indu-ced to differentiate towards adipogenic, myogenic, and osteoblastogenic lineages. Our results suggest that muscle satellite cell in porcine may influence cell fate. Understanding the progression of PSC may lead to improved strat-egies for augmenting meat quality.
Three acetylcholinesterases (AChEs) were identified from the pinewood nematode, Bursaphelenchus xylophilus. Sequence comparison with known AChEs in conjunction with three-dimensional structure analysis suggested that all BxAChEs share typical characteristics of AChE at the major catalytic structures. BgAChE3 was most predominantly transcribed and then followed by AChE1 and AChE2. Immunohistochemistry using anti-BxAChEs antibodies revealed that BxAChE1 is most widely distributed whereas BxAChE2 exhibits more localized distribution in neuronal tissues. BxAChE3 was detected from entire body together with some limited tissues, including mouth parts and alimentary lining, and determined to be the only soluble AChE, suggesting its localization in hemolymph or/and extracellular space. Kinetic analysis of in vitro expressed BxAChEs revealed that BxAChE1 has the highest substrate specificity whereas BxAChE2 has the highest catalytic efficiency with BxAChE3 having the lowest catalytic efficiency. Interestingly, presence of BxAChE3 in the pool of BxAChEs significantly reduced the inhibition of BxAChE1 and BxAChE2 by inhibitors. Knockout of BxAChE3 by RNAi significantly increased the toxicity of nematicides, suggesting the protective role of BxAChE3 against these toxicants. Based on several features, including tissue distribution, expression level, substrate kinetics and inhibition property, it appeared that BxAChE1 is the major AChE with the function of postsynaptic transmission whereas BxAChE3 has been evolved to acquire the function of chemical defense, perhaps intrinsically against secondary toxic compounds from host pine trees, such as α-pinene and limonene. BxAChE2 appears to play a role in post-synaptic transmission in specialized neurons but its detailed physiological function still remains to be elucidated.