검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2006.09 구독 인증기관·개인회원 무료
        Dispersion-strengthened copper with was produced by ball-milling and spark plasma sintering (SPS).Ball-milling was performed at a rotation speed of 300rpm for 30 and 60min in Ar atmosphere by using a planetary ball mill (AGO-2). Spark-plasma sintering was carried out at for 5min under vacuum after mechanical alloying. The hardness of the specimens sintered using powder ball milled for 60min at 300rpm increased from 16.0 to 61.8 HRB than that of specimen using powder mixed with a turbular mixer, while the electrical conductivity varied from 93.40% to 83.34%IACS. In the case of milled powder, hardness increased as milling time increased, while the electrical conductivity decreased. On the other hand, hardness decreased with increasing sintering temperature, but the electrical conductiviey increased slightly
        2.
        2006.09 구독 인증기관·개인회원 무료
        Cu- nanocomposite powders were synthesized by combining high-energy ball-milling of Cu-Ti-B mixtures and subsequent self-propagating high temperature synthesis (SHS). Cu-40wt.% powders were produced by SHS reaction and ball-milled. The milled SHS powder was mixed with Cu powders by ball milling to produce Cu-2.5wt.% composites. particles less than 250nm were formed in the copper matrix after SHS-reaction. The releative density, electrical conductivity and hardness of specimens sintered at were nearly 98%, 83%IACS and 71HRB, respectively. After heat treatment at 850 to for 2 hours under Ar atmosphere, hardness was descedned by 15%. Our Cu- composite showed good thermal stability at eleveated temperature.
        3.
        2006.09 구독 인증기관·개인회원 무료
        The aging behavior of sintered Al composites with various ceramic contents was investigated. 2xxx series blended powder was used as the starting powder. Ceramic contents were 0wt.% and 5wt.%. The blended powders were compacted at 250MPa. The sintering process was performed at for 60min in a atmosphere. Each part was solution-treated at for 60min and aged at . The Rockwell hardness at the peak aging time increased with ceramic contents. However, the peak aging time at maximum hardness was reduced with increased ceramic contents.
        4.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Interpenetrating phase composites of -Cu system were produced via Spark-Plasma Sintering (SPS) oi nanocomposite powders. Under simultaneous action of pressure, temperature and electric current titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a fine-grained skeleton. Increasing SPS-temperature and he]ding time promote densification due to local melting of copper matrix When copper melting is avoided the compacts contain 17-20% porosity but titanium diboride skeleton is still formed representing the feature of SPS . High degree of densification and formation of titanium diboride network result in increased hardness of high-temperature SPS-compacts.
        3,000원
        5.
        2003.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work some properties of nanopowders and possible areas of their applications are discussed. Main attention is paid to the use of nanodispersed powders (NDP) in new materials production technologies.
        4,000원