검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,685

        1.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        가는잎향유[Elsholtzia angustifolia (Loes.) Kitag.]는 화형 이 아름답고, 정유 특유의 향기가 좋아서 분화용 및 지피용 관 상식물로 수요가 증가하고 있고, 전초에는 약효가 있다고 알 려져 있다. 본 연구는 가는잎향유의 육묘에 미치는 플러그 트 레이 셀 사이즈, 파종립수, 차광정도, 추비농도 등의 영향을 구명하기 위하여 수행되었다. 연구결과, 플러그 트레이 셀 사 이즈는 용량이 증가할수록 유묘의 초장, 엽수, 마디수, 근장, 지상부 생체중이 유의적으로 증가하였다. 파종 립수는 2립 파 종 시 가장 효율적이었고, 파종량이 증가할수록 생육이 감소 하였다. 차광정도가 높아질수록 초장은 증가하였고, 경직경, 엽수, 마디수는 55% 차광에서 가장 우수하였다. 추비 처리 시 공시비료 1000배 처리구에서 생육이 가장 양호하였다. 따라 서 가는잎향유의 육묘 시 162셀 트레이에 원예상토를 채운 다음 셀 당 2립 파종한 후 55% 차광막이 설치된 육묘상에서 공시비료 1000배로 엽면시비하는 것이 가장 효과적인 것으로 생각된다.
        4,000원
        2.
        2024.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to attract students to the radio universe, we have constructed a three-element radio interferometer in the National Youth Space Center, Goheung, Korea. It consists of three 1.8 m off-axis parabola antennas with driving systems, sideband separation receivers operating in 12 GHz, a narrow band digitizer, and correlation software. We have used as many commercial products as possible to reduce development costs. The maximum separation of 20 m gives an angular resolution of ∼4′, and the shortest baseline of 3.8 m prevents a serious missing flux. Fringes are detected for several radio sources, including the sun and Cas A. After a rough relative calibration, we have derived visibilities for the sun, whose amplitudes are decreasing for longer baselines. We have made a solar image using the visibility amplitudes and closure phases, referring to the 17 GHz image by Nobeyama Radioheliograph. Developing a flexible real-time correlator seems most crucial if this kind of the system is to be used for more rigorous scientific studies.
        4,000원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Exploring cheap and efficient oxygen evolution reaction (OER) catalysts is extremely vital for the commercial application of advanced energy storage and conversion systems. Herein, a self-supporting Co3S4/ S-doped reduced graphene oxide ( Co3S4/S-rGO) film catalyst is successfully prepared by a blade coating coupled with high-temperature annealing strategy, and its morphology, structure and composition are measured and analyzed. It is substantiated that the as-synthesized Co3S4/ S-rGO film possesses unique self-supporting structure, and is composed of uniformly dispersed Co3S4 nanoparticles and highly conductive S-rGO, which benefit the exposure of catalytic sites and electron transfer. By reason of the synergistic effect of the two individual components, the self-supporting Co3S4/ S-rGO film catalyst displays outstanding catalytic performance towards OER. As a consequence, the Co3S4/ S-rGO film catalyst delivers an overpotential of 341 mV at 10 mA cm-2, and the current attenuation rate is only 2.6% after continuous operation for 4 h, verifying excellent catalytic activity and durability. Clearly, our results offers a good example for the construction of high-performance self-supporting carbon-based composite film catalysts for critical electrocatalytic reactions.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Despite its profound impact on athletic performance, the significance of heart rate recovery (HRR) has been insufficiently addressed in the filed of sports science, particularly in the context of weightlifting characterized by brief and intense exertions involving heavy weights. Serving as a valuable indicator of autonomic nervous system and cardiovascular function, HRR assumes a pivotal role in weightlifting. This comprehensive review aims to delineate the specific demands for HRR in weightlifting, shedding light on the often overlooked cardiovascular considerations within training regimes focused on strength and power. The investigation scrutinizes the repercussions of HRR on weightlifting performance, seeking to elucidate how inadequate recovery intervals may result in physiological and psychological consequences. These consequences encompass a distorted perception of effort, disruption of coordination, compromised posture due to irregular breathing, and an overall decline in lifting capacity. The review systematically presents compelling evidence pertaining to heart rate response and recovery patterns during weightlifting, underscoring the critical importance of well-structured rest periods. Furthermore, the review delves into a comprehensive discussion of factors influencing HRR in weightlifting, encompassing variables such as sex, age, cardiovascular function, hydration, nutrition, and psychological aspects. Finally, a key emphasis is placed on the integration of effective HRR techniques into the training regimens of weightlifters, thereby ensuring sustained and optimized performance outcomes.
        4,000원
        5.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The initial development plans for the six reactor designs, soon after the release of Generation IV International Forum (GIF) TRM in 2002, were characterized by high ambition [1]. Specifically, the sodium-cooled fast reactor (SFR) and very-high temperature reactor (VHTR) gained significant attention and were expected to reach the validation stage by the 2020s, with commercial viability projected for the 2030s. However, these projections have been unrealized because of various factors. The development of reactor designs by the GIF was supposed to be influenced by events such as the 2008 global financial crisis, 2011 Fukushima accident [2, 3], discovery of extensive shale oil reserves in the United States, and overly ambitious technological targets. Consequently, the momentum for VHTR development reduced significantly. In this context, the aims of this study were to compare and analyze the development progress of the six Gen IV reactor designs over the past 20 years, based on the GIF roadmaps published in 2002 and 2014. The primary focus was to examine the prospects for the reactor designs in relation to spent nuclear fuel burning in conjunction with small modular reactor (SMR), including molten salt reactor (MSR), which is expected to have spent nuclear fuel management potential.
        4,000원
        6.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The objectives of this paper are: (1) to conduct the thermal analyses of the disposal cell using COMSOL Multiphysics; (2) to determine whether the design of the disposal cell satisfies the thermal design requirement; and (3) to evaluate the effect of design modifications on the temperature of the disposal cell. Specifically, the analysis incorporated a heterogeneous model of 236 fuel rod heat sources of spent nuclear fuel (SNF) to improve the reality of the modeling. In the reference case, the design, featuring 8 m between deposition holes and 30 m between deposition tunnels for 40 years of the SNF cooling time, did not meet the design requirement. For the first modified case, the designs with 9 m and 10 m between the deposition holes for the cooling time of 40 years and five spacings for 50 and 60 years were found to meet the requirement. For the second modified case, the designs with 35 m and 40 m between the deposition tunnels for 40 years, 25 m to 40 m for 50 years and five spacings for 60 years also met the requirement. This study contributes to the advancement of the thermal analysis technique of a disposal cell.
        4,500원
        7.
        2023.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        With South Korea increasingly focusing on nuclear energy, the management of spent nuclear fuel has attracted considerable attention in South Korea. This study established a novel procedure for selecting safety-relevant radionuclides for long-term safety assessments of a deep geological repository in South Korea. Statistical evaluations were performed to identify the design basis reference spent nuclear fuels and evaluate the source term for up to one million years. Safety-relevant radionuclides were determined based on the half-life criteria, the projected activities for the design basis reference spent nuclear fuel, and the annual limit of ingestion set by the Nuclear Safety and Security Commission Notification No. 2019-10 without considering their chemical and hydrogeological properties. The proposed process was used to select 56 radionuclides, comprising 27 fission and activation products and 29 actinide nuclides. This study explains first the determination of the design basis reference spent nuclear fuels, followed by a comprehensive discussion on the selection criteria and methodology for safety-relevant radionuclides.
        4,500원
        8.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        프리지아 ‘Ruby Star’는 농촌진흥청 국립원예특작과학원 에서 보라색 홑꽃 ‘Avilla’와 흰색 반겹꽃 ‘Medeo’를 2012년 교배하여 얻은 종자로부터 2006년 향이 좋고 개화기가 빠른 적색 홑꽃 계통을 선발하여 품종으로 개발되었다. 2014년부 터 2017년까지 생육·개화 특성검정 및 육성계통평가회의 기 호도 평가를 거쳐 선발되었으며 2018년 직무육성품종심의회 를 통해 ‘Ruby Star’로 명명되어 2021년 신품종으로 등록되 었다. ‘Ruby Star’는 빨간색(RHS, R45A) 홑꽃인 절화용 프리 지아 품종으로 개화소요일수가 118.0일이며 초장이 120.5cm 로 대조품종 ‘Rapid Red’보다 약 28.7cm 더 길다. 주당 분 지수는 5.8개로 대조품종에 비해 수확량이 많고 첫번째 분지 의 길이가 32.0cm, 두께가 3.02mm로 절화 특성이 우수하 다. ‘Ruby Star’의 소화수 및 소화폭은 각각 14.8개, 6.3cm 로 소화수가 많은 중대형화이다. 절화수명은 약 8.4일이며 주 당 자구수는 3.8개, 평균 자구중은 2.9g이다. 전자코를 이용 한 PCA 분석 결과 PC1과 PC2의 설명력은 각각 97.9%, 1.8%로 전체 변이의 99.7%를 반영했으며 ‘Ruby Star’와 대 조품종 ‘Rapid Red’는 서로 다른 향기 패턴을 보였다. Radar plot 결과 총 6개의 MOS 센서에서 ‘Ruby Star’의 센서 반응 이 ‘Rapid Red’보다 강하게 나타나 ‘Ruby Star’의 향기가 더 강한 것으로 나타났다.
        4,000원
        9.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pasture formation and management are crucial to avoid yield reduction. This experiment aimed to examine the effects of tall fescue-centered mixed-seeding combinations on yield and vegetation changes in perennial pastures in the central region for two years, from September 2020 to October 2022. The treatments were arranged in three replications in a randomized block design: control (C), tall fescue-based mixture-1 (T-1), and tall fescue-based mixture-2 (T-2). The tall fescue (TF), orchard grass (OG), perennial ryegrass (PRG), Kentucky bluegrass (KBG), and white clover (WC) were used. The emergency rate of grasses (70.0 to 73.3%) did not differ among mixed seeding combinations. Overwintering rates (81.7 to 83.3%) were similar among treatments. The plant height of grasses was similar at each harvest date, with the highest height (86.2 cm) recorded in the second harvest of the first year, followed by that (58.4 cm) in the third harvest of the first year; it was least (38.9 cm) in the fourth harvest of the second year. There was no significant difference in the dry matter yield of grasses among the mixed seeding combination treatments in the first, third, or fourth harvests of the first year (p>0.05). For second-year grasses, dry matter yield was not significantly different in harvest date among the treatments (p>0.05). Based on mixed seeding ratio, orchard grass showed the highest yield at 70% in the C treatment, followed by tall fescue at 80% and 60% in the T-1 and T-2 treatments, respectively, in the first harvest after seeding. There was no significant difference in feed value between treatments (p>0.05), but a significant difference was observed between the third and fourth harvest (p<0.05). Therefore, it indicated that it is important to create perennial pastures in the central region through mixed seeding combinations centered on tall fescue.
        4,000원
        10.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Canine induced pluripotent stem cells (iPSCs) are an attractive source for veterinary regenerative medicine, disease modeling, and drug development. Here we used vitamin C (Vc) to improve the reprogramming efficiency of canine iPSCs, and its functions in the reprogramming process were elucidated. Methods: Retroviral transduction of Oct4, Sox2, Klf4, c-Myc (OSKM), and GFP was employed to induce reprogramming in canine fetal fibroblasts. Following transduction, the culture medium was subsequently replaced with ESC medium containing Vc to determine the effect on reprogramming activity. Results: The number of AP-positive iPSC colonies dramatically increased in culture conditions supplemented with Vc. Vc enhanced the efficacy of retrovirus transduction, which appears to be correlated with enhanced cell proliferation capacity. To confirm the characteristics of the Vc-treated iPSCs, the cells were cultured to passage 5, and pluripotency markers including Oct4, Sox2, Nanog, and Tra-1-60 were observed by immunocytochemistry. The expression of endogenous pluripotent genes (Oct4, Nanog, Rex1, and telomerase) were also verified by PCR. The complete silencing of exogenously transduced human OSKM factors was observed exclusively in canine iPSCs treated with Vc. Canine iPSCs treated with Vc are capable of forming embryoid bodies in vitro and have spontaneously differentiated into three germ layers. Conclusions: Our findings emphasize a straightforward method for enhancing the efficiency of canine iPSC generation and provide insight into the Vc effect on the reprogramming process.
        4,000원
        11.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수국은 수국과(Hydrangeaceae) 수국속(Hydrangea)의 낙엽관목 식물로 크고 화려한 화형을 가져 절화, 분화 및 조 경수로 전세계적 인기가 있는 식물이다. 나무수국은 수국 (H. macrophylla)과 비교하여 삽목율이 낮은 것으로 알려져 있지만 나무수국의 묘목생산을 위한 삽목 연구 및 두 종간 삽목율 차이 원인 규명에 관한 연구는 미미하다. 본 연구는 IBA(Indol-3-butyric acid) 500mg·L-1 처리시 삽수의 침지 시간에 따른 삽목율 조사를 통해 적정 호르몬 처리 시간을 제 시하고 나무수국과 수국의 해부학적 구조 관찰을 통한 삽목율 차이 발생의 원인을 규명하고자 실시하였다. 나무수국의 적정 호르몬 처리 시간을 규명하기 위해 IBA 500mg·L-1을 무처 리, 30분, 2시간, 4시간 침지처리를 하였다. 종간 삽목율 차이 발생의 원인 규명을 위해 나무수국과 수국의 줄기 단면과 삽 목 후 시간 경과에 따른 발근을 해부학적으로 관찰하였다. 연 구의 결과 나무수국의 삽목시 IBA 500mg·L-1에 2시간 이상 침지처리가 다른 처리구와 비교하여 발근율이 높고 발생 뿌리 수가 가장 많았다. 또, 나무수국의 삽목율이 수국과 비교하여 낮은 것은 줄기의 세포 구조상 방사조직의 형태, 섬유세포의 밀도, 도관의 발달, 전분 함유 세포의 수 등에 차이가 관찰되 었고 이러한 세포 구조적 차이들의 영향으로 나무수국이 수국 보다 삽목 후 뿌리 조직 세포분열이 7일 늦게 시작되는 것이 확인되었다. 본 연구의 결과로 나무수국의 삽목 번식의 기초 자료로 활용되어 묘목 생산 효율 증대에 활용되길 바란다.
        4,000원
        12.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Canine hyperadrenocorticism, a prevalent endocrine disorder characterized by excessive cortisol production. Notably, hypercoagulability leading to pulmonary thromboembolism (PTE) poses a substantial concern. PTE may be underestimated because of the rapid dissolution of canine thrombi postmortem. However, traditional coagulation assays face challenges in early detection of hypercoagulability. Therefore, this study explored the use of thromboelastography (TEG) as a diagnostic tool for identifying hypercoagulability in dogs with hyperadrenocorticism. A total of 31 dogs visited the Gyeongsang Animal Medical Center between 2018 and 2022, comprising 21 dogs with hyperadrenocorticism and 10 controls who underwent clinical and coagulation analyses. Hyperadrenocorticism was diagnosed using a low-dose dexamethasone stimulation test or adrenocorticotropin hormone stimulation test, and conventional laboratory parameters and coagulation parameters, such as the prothrombin time, activated partial thromboplastic time, fibrinogen, and TEG results, were compared between the groups. Clinical data revealed significantly elevated monocyte, platelet, alanine aminotransferase, alkaline phosphatase, triglyceride, and cholesterol concentrations in dogs with hyperadrenocorticism, which were attributed to excess cortisol secretion (p<0.05). TEG analysis demonstrated significantly decreased K values and increased α and MA values in hyperadrenocorticism dogs (p<0.05), indicating a shortened clotting time and enhanced clot strength, suggestive of hypercoagulability. TEG effectively highlights hypercoagulability in dogs with hyperadrenocorticism and provides valuable insights in predicting blood clot formation. Although predicting clot formation in dogs remains complex owing to multifactorial influences, this study underscores the potential utility of TEG in enhancing such predictions for dogs with hyperadrenocorticism.
        4,200원
        15.
        2023.11 구독 인증기관·개인회원 무료
        The ultimate objective of deep geological repositories is to achieve complete segregation of hazardous radioactive waste from the biosphere. Thus, given the possibility of leaks in the distant future, it is crucial to evaluate the capability of clay minerals to fulfill their promising role as both engineered and natural barriers. Selenium-79, a long-lived fission product originating from uranium- 235, holds significant importance due to its high mobility resulting from the predominant anionic form of selenium. To investigate the retardation behaviors of Se(IV) in clay media by sorption, a series of batch sorption experiments were conducted. The batch samples consisted of Se(IV) ions dissolved in 0.1 M NaCl solutions, along with clay minerals including kaolinite, montmorillonite, and illite-smectite mixed layers. The pH of the samples was also varied, reflecting the shift in the predominant selenium species from selenious acid to selenite ion as the environment can shift from slightly acidic to alkaline conditions. This alteration in pH concurrently promotes the competition of hydroxide ions for Se(IV) sorption on the mineral surface as the pH increases and impedes the selective attachment of selenium. The acquired experimental data were fitted through Langmuir and Freundlich sorption isotherms. From the Freundlich fit data, the distribution coefficient values of Se(IV) for kaolinite, montmorillonite, and illite-smectite mixed layer were derived, which exhibited a clear decrease from 91, 110, 62 L/kg at a pH of 3.2 to 16, 6.3, 12 L/kg at a pH of 7.5, respectively. These values derived over the pH range provide quantitative guidance essential for the safety assessment of clay mineral barriers, contributing to a more informed site selection process for deep geological repositories.
        16.
        2023.11 구독 인증기관·개인회원 무료
        Alpha activities can be used for categorization, transportation, and disposal of radioactive waste generated from the operation of nuclear facilities including nuclear power plants. In order to transport and dispose of such low- and intermediate-level radioactive waste (LILW) to the Wolsong LILW Disposal Center (WLDC) at Gyeongju, the gross alpha concentration of an individual drum should be determined according to the acceptance criteria. In addition, when the gross alpha concentration exceeds 10 Bq/g, the inventory of the comprising alpha emitters in the waste is to be identified. Gross alpha measurements using a proportional counter are usually straightforward, inexpensive, and high-throughput, so they are broadly used to assay the total alpha activity for environmental, health physics, and emergency-response assessments. However, several factors are thoughtfully considered to obtain a reliable approximate for the entire alpha emitters in a sample, which include the alpha particle energy of a particular radionuclide, the radionuclide that is used as a calibration standard, the uniformity of film in a planchet, time between sample collection and sample preparation, and time between sample preparation and counting. Korea Atomic Energy Research Institute (KAERI) have evaluated the inventory of radionuclides in low-level radioactive waste drums to send every year hundreds of them to the WLDC. In this presentation, we revisit the gross alpha measurement results of the drums transported to WLDC in the past few years and compare them with the concentrations of alpha emitters measured from alpha spectrometry and gamma spectrometry. This study offers an insight into the gross alpha measurement for radioactive waste regarding calibration source, self-absorption effect, composition of alpha emitters, etc.
        17.
        2023.11 구독 인증기관·개인회원 무료
        To achieve permanent disposal of radioactive waste drums, the radionuclides analysis process is essential. A variety of waste types are generated through the operation of nuclear facilities, with dry active waste (DAW) being the most abundant. To perform radionuclides analysis, sample pretreatment technology is required to transform solid samples into solutions. In this study, we developed a dry ashing-microwave digestion method and secured the reliability of the analysis results through a validity evaluation. Additionally, we conducted a comparative analysis of the radioactivity of 94Nb nuclides with and without the chemical separation process, which reduced the minimum detectable activity (MDA) level by more than 65-fold for a certain sample.
        18.
        2023.11 구독 인증기관·개인회원 무료
        The nuclear fuel that melted during the Fukushima nuclear accident in 2011 is still being cooled by water. In this process, contaminated water containing radioactive substances such as cesium and strontium is generated. The total amount of radioactive pollutants released by the natural environment due to the nuclear accident in Fukushima in 2011 is estimated to be 900 PBq, of which 10 to 37 PBq for cesium. Radioactive cesium (137Cs) is a potassium analog that exists in the water in the form of cations with similar daytime behavior and a small hydration radius and is recognized as a radioactive nuclide that has the greatest impact on the environment due to its long half-life (about 30 years), high solubility and diffusion coefficient, and gamma-ray emission. In this study, alginate beads were designed using Prussian blue, known as a material that selectively adsorbs cesium for removal and detection of cesium. To confirm the adsorption performance of the produced Prussian blue, immersion experiments were conducted using Cs standard solution, and MCNP simulations were performed by modeling 1L reservoir to conduct experiments using radioactive Cs in the future. An adsorption experiment was conducted with water containing standard cesium solution using alginate beads impregnated with Prussian blue. The adsorption experiment tested how much cesium of the same concentration was adsorbed over time. As a result, it was found that Prussian blue beads removed about 80% of cesium within 10-15 minutes. In addition, MCNP simulation was performed using a 1 L reservoir and a 3inch NaI detector to optimize the amount of Prussian blue. The results of comparing the efficiency according to the Prussian volume was shown. It showed that our designed system holds great promise for the cleanup and detection of radioactive cesium contaminated seawater around nuclear plants and/or after nuclear accidents. Thus, this work is expected to provide insights into the fundamental MCNP simulation based optimization of Prussian blue for cesium removal and this work based MCNP simulation will pave the way for various practical applications.
        19.
        2023.11 구독 인증기관·개인회원 무료
        A new annual dose evaluation system called E-DOSE has been developed. The system is based on the methodology of the previous version, K-DOSE60, which uses the dose evaluation methods of the International Commission on Radiological Protection (ICRP-60). However, E-DOSE is coded in ABAP to be compatible with the KHNP’s enterprise resource planning (ERP) system, SAP. This allows E-DOSE to use the real-time data from SAP, which minimizes the need for user intervention. The socio-environmental data, which was previously managed by the staff of each plant sites, can now managed in the system in a centralized manner. This is a significant improvement over the previous system, as it reduces the risk of errors and makes it easier to track and manage data. The system also automatically generates the reports required by regulations. EDOSE is expected to minimize the occurrence of human errors in preparing and managing the input data. This is because the system uses the data from SAP, which is less prone to errors than manually entered data. Additionally, the automatic generation of reports reduces the risk of errors in report preparation. E-DOSE is also expected to improve work efficiency. This is because the system automates many of the tasks involved in annual dose evaluation, such as data entry, calculation, and report generation. Overall, E-DOSE is a significant improvement over the previous annual dose evaluation system. It is more efficient, accurate, and user-friendly.
        20.
        2023.11 구독 인증기관·개인회원 무료
        There are analytical methods used for measuring activity when light photons are emitted for scintillating-based analytical application. When this electron returns to the original stable state, it releases its energy in the form of light emission (visible light or ultraviolet light), and this phenomenon is called scintillation. Scintillator is a general term for substances that emit fluorescence when exposed to radiation such as gamma-rays. Radioactivity is all around us and is unavoidable because of the ubiquitous existence of background radiations emitted by different sources. The scintillator contributes to these sensing, and it is expected that the inspection accuracy and limit of detection will be improved and new inspection methods will be developed in the future. Moreover, scintillators are chemical or nanomaterial sensors that can be used to detect the presence of chemical species and elements or monitor physical parameters on the nanoscale. In this study, it includes finding use in scintillating-based analytical sensing applications. A chemical and nanomaterial based sensors are self-contained analytical tools that could provide information about the chemical compositions or elements of their environment, that is, a liquid or even gas condition. Herein, we present an insightful review of previously reported research in the development of high-performance gamma scintillators. The major performance-limiting factors of scintillation are summed up here. Moreover, the 2D material has been discussed in the context of these parameters. It will help in designing a prototype nanomaterial based scintillators for radiation detection of gamma-ray.
        1 2 3 4 5