This study aims to demonstrate the integration of character education with content and language integrated learning (CLIL) and evaluate its effects on the English language learning and character development of young learners who use EFL. Eight participants received character-integrated CLIL instruction over 16 class sessions. Employing a mixed-method approach, this study collected qualitative data primarily through observations, interviews, portfolios, self-assessments, and peerassessments, complemented by quantitative data from English tests and questionnaires. Findings revealed that character-integrated CLIL significantly enhanced learners’ oral language skills, confidence, and engagement in learning English. Additionally, it facilitated simultaneous development of language proficiency and subject knowledge, while promoting acquisition of positive character traits. The learner-centered environment supported by teacher scaffolding and authentic materials allowed learners to apply their knowledge to real-life situations. These results provide educators with a model for effectively integrating character education into language learning. They also highlight the broader potential of CLIL to foster holistic learner development.
The present study investigates the use of generative artificial intelligence (AI) tools by pre-service teachers (PSTs) in lesson planning for a middle-school English as a foreign language (EFL) class, aiming to address gaps and inform teacher training. The case study examined PSTs in a South Korean university course who were tasked with creating lesson plans using generative AI to aid in lesson plan development for a middle school lesson that incorporated generative AI. Data were analyzed thematically, and results revealed that generative AI was used in topic selection, material creation, lesson organization, and language checking. While generative AI facilitated efficiency and creativity, challenges emerged, including the quality of outputs and limited incorporation of effective pedagogical strategies. These findings indicate a need for targeted training in prompt engineering, ethical considerations, pedagogy, and collaborative practices to enhance PSTs’ generative AI competencies. This study contributes to teacher education programs by providing insights into the practical integration of generative AI in pedagogical practices.
한반도 애호랑밑빠진버섯벌레속(Baeocera Erichson, 1845)에 대하여 논의하고 검색표를 제공하였다. 참애호랑밑빠진버섯벌레(Baeocera choi Hoshina and Park, 2011)는 배애호랑밑빠진버섯벌레[Baeocera ventralis (Löbl, 1973)]의 동물이명 임이 밝혀졌다. 이들의 수컷생식기 형질 을 도해하고 근연종과 함께 동정에 유용한 형태형질을 제시한다.
Lumpy Skin Disease (LSD) and Foot-and-Mouth Disease (FMD) cause substantial economic losses on the livestock industry. Therefore, vaccinations have been implemented as the control strategy in endemic countries. However, the potential adverse effects of administering vaccines for both diseases simultaneously have not been thoroughly evaluated. The aim of this study was to assess the impact of vaccinating dairy cows with either or both LSD and FMD vaccines on milk production and physiological parameters such as milk temperature, rumination time and body weight. The experimental groups were divided into four according to the injection materials: 1) saline, 2) LSD vaccine, 3) FMD vaccine, and 4) both vaccines. The impact of vaccination on milk yield and physiological parameters was evaluated daily until 12 days post-vaccination, and milk components were analyzed twice, once per week. Among the experimental groups as well as each vaccine group, no statistically significant differences (p < 0.05) were observed at milk yield, milk components, or milk temperature. This suggests that simultaneous vaccination of LSD and FMD can be administered without adverse effects.
We introduce a new clustering algorithm, MulGuisin (MGS), that can identify distinct galaxy over-densities using topological information from the galaxy distribution. This algorithm was first introduced in an LHC experiment as a Jet Finder software, which looks for particles that clump together in close proximity. The algorithm preferentially considers particles with high energies and merges them only when they are closer than a certain distance to create a jet. MGS shares some similarities with the minimum spanning tree (MST) since it provides both clustering and network-based topology information. Also, similar to the density-based spatial clustering of applications with noise (DBSCAN), MGS uses the ranking or the local density of each particle to construct clustering. In this paper, we compare the performances of clustering algorithms using controlled data and some realistic simulation data as well as the SDSS observation data, and we demonstrate that our new algorithm finds networks most correctly and defines galaxy networks in a way that most closely resembles human vision.
본 연구는 공연 기획 스타트업인 컬쳐띵크(주)의 경쟁력을 VRIO 모델 을 통해 분석하였다. 연구 방법으로는 2차 자료를 활용한 질적 연구를 수행하였다. 연구 결과, '가치' 측면에서는 랩비트 페스티벌을 통한 음악 시장의 다양성 확대와 글로벌화, AFS를 통한 유연한 아티스트 지원 모 델, 유통 서비스 푸이의 롱테일 전략이 주요 가치 창출 요소로 확인되었 다. '희소성' 측면에서는 축적된 페스티벌 운영 노하우 및 AFS의 독특한 비즈니스 모델, 광범위한 업계 네트워크와 '랩비트' 브랜드 가치가 경쟁 사가 쉽게 획득하기 어려운 자원으로 평가되었다. '모방 불가능성' 측면 에서는 시간 압축성의 비경제적 효과와 경험에 따른 역사적 고유성과 사 회적 복잡성 그리고 광범위한 네트워크 효과 등이 핵심 역량으로 분석되 었다. '조직' 측면에서는 유연한 매트릭스 구조, '창의적 실험'과 '데이터 기반 의사결정' 문화의 공존, '열린 소통'과 '수평적 관계' 강조, 지속적 학습과 성장 마인드셋이 자원과 역량을 효과적으로 활용하는 데 기여하 고 있는 것으로 나타났다. 이러한 연구 결과를 바탕으로 음악 산업의 가 치 사슬 통합 관리, 데이터 기반 의사결정과 창의적 실험의 균형, 글로벌 네트워크 구축, 기술 혁신 대응 능력 강화 등을 향후 국내 음악 산업의 발전 방향으로 제시하였다.
본 연구의 목적은 대학의 진로 계획 프로그램이 음악 전공 대학생의 취업 안정성에 미치는 영향에 대해 탐색하는 것이다. 이를 위해 본 연구 는 산둥성 Q 대학교 음악대학에서 실행하는 진로 계획 프로그램을 사례로 로 선택하였다. 본 연구에 필요한 자료 수집은 인터뷰, 현장 관찰 그리고 관련문헌 수집을 통하여 이루어졌으며, Glaser의 지속 비교 분석법을 사 용하여 자료를 분석하였다. 연구 결과에 따르면, 진로 계획 프로그램을 제공하는 것은 학생들에게 직업 계획을 효과적으로 세우도록 도움을 주 었다. 이는 학생들이 직업에 대한 의식을 분명하게 확립하고 시야를 넓힐 뿐만 아니라,학생들이 이성적 숙고에 따라 직업을 선택함으로써 개인을 발전시키는데 도움을 주었다. 이러한 연구 결과는 직업 선택과 입사 준 비 그리고 취업에 이르기까지 학생들의 직업의 안정성을 보장하는 데 있 어 진로 계획 프로그램의 중요성을 보여주었다. 그러므로 진로 계획 프 로그램이 학생들에게 현실적인 도움이 될 수 있도록 보다 적극적으로 운 용할 필요가 있음을 보여준다.
Current investigations provide a comprehensive understanding of the occurrence and biodiversity of plant-parasitic nematodes (PPNs) in the major citrusproducing regions of Jeju Island, South Korea. Our survey identified five genera and five species of PPNs from 82 infested Citrus unshiu field samples collected across 116 sites in the Jeju provinces. Community analysis revealed the highest prevalence of PPNs (39.02%) at Namwon-eup, significantly driven by Tylenchulus semipenetrans, followed by Paratylenchus sp., Helicotylenchus sp., Meloidogyne sp., and Pratylenchus sp. Data indicate that all 82 sites were infested with T. semipenetrans (70.68%), marking a considerable increase in prevalence compared to previous surveys and posing a significant threat to citrus cultivation. The study results also demonstrate the influence of soil type on PPNs communities, revealing correlations between soil texture and nematode diversity. Citrus orchards cultivated in black clay loam soil exhibited significant PPN infestations. Overall, the PPN survey underscores the economic importance of monitoring citrus nematode infection rates and maintaining economic threshold levels in citrus production. It also emphasizes the need for developing effective management strategies to control PPNs, which are essential for maintaining crop yield and ensuring agricultural sustainability.
A multi-barrier can be applied for the deep geological disposal of high-level radioactive waste. The multi-barrier comprises an engineered barrier and the natural barrier of the host rock. In the engineered barrier, the bentonite buffer is the key component for the disposal container, and the bentonite buffer thickness is given important consideration when designing the engineered barrier. This study reviewed the safety functions of bentonite buffers. Subsequently, the requirements and factors necessary to determine the thickness of the bentonite buffer, including criteria for radiological safety and the thermal stability of the disposal system, were identified. Additionally, the bentonite buffer thicknesses required for the top, bottom, and side of the disposal container were calculated. A double-layered emplacement method is also proposed for the bentonite buffer to improve disposal efficiency in terms of thermal management. Based on radiological safety and thermal stability analyses, an optimal thickness of 0.36 m was found to be appropriate for the bentonite buffer surrounding the disposal container. The thickness of the bentonite buffer above the disposal container can be determined based on the excavation damaged zone depth. The study findings can be used as a reference when designing deep geological disposal systems.
Cherry tomato (Solanum lycopersicum L,. var. cerasiforme Mill.) is small fruits with a bright red color resembling a cherry and having an excellent taste, sweet and juicy ambience. So far, no cherry tomato variety was registered in Ethiopia. Consequently, six genotypes were imported from National Institute of Horticulture and Herbal Sciences (NIHHS), Rural Development Administration (RDA) Republic of Korea, and field experiment was conducted in RCBD with three replications at six Ethiopian testing sites, with irrigation, during off-seasons of 2021 and 2022 to identify high yielding, well adapted and good quality varieties. The overall analysis of variance across locations and years showed non-significant difference among the genotypes for marketable and total yields. But separate analysis for each site has revealed significant differences among genotypes at Melkassa, Koka, Adami- Tulu and Fogera, unlike that of Kulumsa and Woramit. There were significant differences (P < 0.05) among these genotypes for fruit numbers per plant, average fruit weight, fruits per cluster, plant height, skin thickness, juice volume and total soluble solid. Wonhong No.3 gave higher marketable (24.49 t/ha) and total (26.19 t/ha) yields, and generally Wonhong Nos.3 and 5 had higher yields and good qualities across these tested locations and years. Hence, Wonhong No.3 (designated as Jorgie-1) was registered for its higher yield, non-cracking, good TSS and color, while Wonhong No.5 (renamed as Jorgie-2) was preferred for its smaller fruit size, reasonable yield and quality (TSS, color, non-cracking). Hence, both varieties were officially registered in 2023 season for commercial production in different agro-ecologies of Ethiopia, and they are believed to add more economic and nutritional values for the tomato producers and the consumers. They can also support the intensification of tomato cultivation in peri-urban and urban agriculture, where demands and thus government focus are increasingly growing.
Moringa oleifera, a versatile plant, has been traditionally used to treat various ailments and is gaining scientific attention due to its potential as a medicine. Native to the Indian subcontinent, it is widely grown in tropical and subtropical regions, thriving in Asia, Africa, and South America, especially in arid climates. This study explores the antioxidant potential of Moringa oleifera leaf extract (MOLE), employing a comprehensive screening approach with various solvents to identify the most effective extraction method. Initial experiments assessed antioxidant efficacy and yield using distilled water (D.W.), 95% ethanol, and 95% methanol. Among these, 95% ethanol extract demonstrated superior antioxidant activity, confirmed through assays such as 2,2-diphenyl-1-14 picrylhydrazyl (DPPH) radical scavenging assay, total polyphenol content analysis, and reducing power assay. In addition, with the 95% ethanol MOLE, a higher extraction efficiency was yielded compared to other solvents, making it the most effective for large-scale preparation. HPLC analysis revealed the presence of key bioactive compounds, including ellagic acid, rutin, Q-3-O, quercetin, and kaempferol. Results revealed that MOLE, prepared using 95% ethanol, exhibited remarkable antioxidant properties, attributed to its rich polyphenolic content. This research underscores the therapeutic potential of MOLE as a natural antioxidant source and highlights the importance of solvent optimization in phytochemical extractions.
Background: The ability of adeno-associated viruses (AAVs) to transduce various cell types with minimal immune responses renders them prominent vectors for gene editing (GE), with different AAV serotypes exhibiting distinct transduction efficiencies due to their specific cellular tropism. However, detailed molecular processes of AAV infection and penetration, as well as the optimal serotype for specific purposes, remain poorly understood. Porcine models are widely used in research benefitting both human and livestock due to anatomical and physiological similarities to humans. Methods: Transduction efficiencies of 18 AAV serotypes (AAV1–9, 6.2, rh10, DJ, DJ/8, PHP.eB, PHP.S, 2-retro, 2-QuadYF, and 2.7m8) were evaluated in immortalized porcine lung epithelial cells (pLCsImt) and pulmonary alveolar macrophages 3D4/31 (PAMs 3D4/31). Results: We found AAV2, DJ, and 2.7m8 to be the most effective in both cell types. The highest enhanced green fluorescent protein expression of 52.46 ± 2.4% in pLCsImt and 64.08 ± 2.4% in PAMs 3D4/31 was observed for AAV2, while negligible transduction was observed for AAV4, rh10, DJ, PHP.eB, PHP.S, and 2-retro. AAV-DJ showed superior transduction efficiency in PK-15, as compared to AAV2 and 2.7m8. Results emphasize the cell type-specific nature of AAV serotype transduction efficiencies. Notably, AAV2 was most effective in both lung and macrophage cells, whereas AAV-DJ was more effective in renal cells. Conclusions: Our findings suggest that AAV2 was identified as the most efficient serotype for transducing pLCsImt and PAMs 3D4/31, compare to the PK-15 cells. Understanding cell type-specific preferences of AAV serotypes offer crucial insight for tailoring AAV vectors to specific tissue and optimizing genome editing strategies, with potential implications for the advancement of personalized medicine and development of treatments for human and livestock.
Clove (Syzygium aromaticum) is a highly valued medicinal plant native to Aisa. Widely used as a spice, renowned for its medicinal properties, particularly in Ayurveda and traditional Chinese medicine. In this study, clove bud extract (CBE) was prepared at different ethanol concentrations of 50%, 80%, and 90%, respectively. The antioxidant activity of the CBE was evaluated through DPPH, polyphenol, and reducing power assays, revealing its strong antioxidant potential, with 90% ethanol being the most effective extract. HPLC analysis identified eugenol (8.7 mg/g) as the major active compound, known to possess anti-inflammatory and antioxidant properties. Given the role of oxidative stress and inflammation in atopic dermatitis (AD), the therapeutic potential of CBE was explored using a 1-chloro-2, 4-dinitrobenzene (DNCB)-induced AD mouse model. Five-week-old BALB/c mice were induced with AD by topical application of DNCB. CBE was administered topically to the affected skin (back and ear) areas for 4 weeks. The treatment of CBE significantly reduced the severity of clinical dermatitis, decreased epidermal thickness, and lowered mast cell and eosinophil infiltration in skin tissue, as observed through hematoxylin eosin staining and toluidine blue staining. The results demonstrated CBE as a promising therapeutic agent for managing AD through its regulation of skin inflammation and oxidative stress, making it a potential candidate for future treatments of inflammatory skin disorders.
Fetal Bovine Serum (FBS) plays a crucial role in animal cell culture; however, the increasing number of bovine fetuses used and sacrificed solely for FBS collection has raised ethical concerns globally. The welfare of fetuses during FBS blood collection has become a key focus of debate among animal welfare and ethics organizations worldwide. Previous studies indicate that heat-inactivated coelomic fluid (HI-CF) from the earthworm Perionyx excavatus may serve as a viable FBS alternative in adherent cell cultures. This study evaluates the potential of HI-CF as an FBS substitute during the in vitro maturation (IVM) stage of bovine embryo culture, with a focus on improving developmental rate through antioxidation effects. In this study, 2% HI-CF was incorporated into IVM media, assessing its impact on cell growth, differentiation, and the expression of genes related to antioxidation. The group of 2% of HI-CF exhibited a trend toward increased cleavage and blastocyst development rates compared to the control group. Although antioxidant genes such as NRF2 and GSR showed no statistically significant differences between the control and treatment groups, a trend toward increased expression was observed. Conversely, GPX1 displayed a trend of decreased expression. Notably, IGF1 and NQO1 were significant upregulated (p < 0.05) in the 2% HI-CF group. Additionally, oocytes stained with H2DCFDA showed a significantly reduced ROS levels (p < 0.05) in the 2% HI-CF group compared with controls. These findings suggest that HI-CF's antioxidative effects support enhanced cell growth and blastocyst development rate, surpassing those observed with FBS. Consequently, HI-CF shows promise as an effective alternative to FBS in vitro maturation of bovine oocytes.
아프리카계 미국작가들이 창작한 문학 작품들인 “아프리카계 미국인 문 학”은 미 전역에서 고통 받은 흑인들을 탐구한다. 이들 저자는 다문화적 배경에도 주 로 백인에 의한 비백인의 지배와 그로 인한 영향, 특히 인종 차별 문제에 대해 묘사 하려 한다. 그들 작가가 다루는 다양한 주제들은 시대의 흐름에 따라 많은 변화를 겪 었다. 미국 남북 전쟁 이전에, 아프리카계 미국인 작가들은 주로 인종차별, 종교, 그리 고 노예제 문제를 다루었지만, 이제 아프리카계 미국작가들은 자신들의 감정, 행동, 그 리고 죽음에 대한 인식을 기록한다. 이들 작품에서 등장하는 아프리카계 미국인 주인 공들은 종종 자신들이 통제할 수 없는 일들을 강제로 수행해야 하는 무력한 인물로 묘사된다. 일반적으로 아프리카계 미국인 작가들은 인종차별, 흑인 미학, 그리고 정체 성 탐구에 대해 글을 쓴다. 주목할 만한 현대 아프리카계 미국인 소설가로는 스콧 리 드와 오마르 타이리가 있다. 그들의 저작은 일반적으로 인종 간의 상호작용과 흑인 미 국인들의 가장 열악한 경제적 상황을 묘사한다. 이 글의 주요 목적은 인종 정치와 차 별이 아프라카계 미국인들의 성공을 어떻게 방해하는지를 분석하는 것이다. 분석을 위 해 탈식민지 이론과 비판적 인종 이론을 사용한다.
본 연구는 K-공간 기반 노이즈 제거 딥러닝(DL)을 이용한 확산강조영상(DWI)의 유용성을 평가하고자 하였다. 연구 를 위해 간세포암으로 확진된 환자 30명을 대상으로 DL 기법 적용 전후의 DWI에 각각 확산경사자계(b-value) 50 과 800을 적용하여 영상화하였다. 획득한 영상에서 간세포암 조직과 정상 간 조직에 관심 영역을 설정하여 b50, b800에서의 신호대잡음비(SNR)와 대조대잡음비(CNR)를 측정하였고 두 명의 관찰자가 각 영상에서 간세포암 조직 을 측정하여 겉보기확산계수(ADC) 값을 계산하였다. 모든 측정값의 평가는 T-검정(T-test)을 사용하여 상관관계 를 평가하였으며 급내상관계수(ICC)를 이용하여 두 관찰자 간 ADC 측정값의 일치도와 신뢰도를 평가하였다. 연구 결과, DL 적용 후 영상에서 SNR과 CNR이 모두 높아졌으며 통계적으로 유의한 것으로(p<0.05) 나타났다. 또한, 간세포암의 ADC 값은 통계적으로 유의하지 않은 것으로(p<0.05) 나타났지만 두 관찰자 간 ADC 측정값의 일치에 대한 신뢰도는 상관계수가 0.75 이상으로 우수하였고, 간세포암의 고유한 성질로 인해 ADC 값의 변화가 적은 점을 고려한다면 충분히 유의한 결과라고 볼 수 있다. 결론적으로 DL DWI은 영상 획득 시간을 단축하면서도 기존 DWI 보다 질적으로 더 나은 영상을 획득했다. 향후 다양한 MRI 검사에 DL이 적용된다면 더욱 유용하게 사용될 것으로 사료 된다.
Calcitonin (CT) and CT gene-related peptide (CGRP) are well known to regulate blood calcium concentration and osmotic pressure in vertebrates. Although lophotrochozoan CT-like peptides and their receptors have been characterized in several model species, the presence of CT-like signaling systems in gastropods remains unknown. In this study, we identified two CT-like peptides, Hdh-CT1 and -CT2, and their receptors (CTRs), namely Hdh-CTR-L and -CTR-S, in Pacific abalone. Transcripts encoding Hdh-CT1 and Hdh-CT2 precursors were expressed mainly in neural ganglia. Molluscan CT-type peptides including Hdh-CT peptides were similar in length and showed highly conserved two Cys residues forming a disulfide bond in their N-terminal regions. A phylogenetic analysis revealed that gastropod CTRs, including Hdh-CTRs, belong to a large molluscan CTR subfamily. A luciferase reporter driven by cAMP responsive element was stimulated by Hdh-CT1 but not by Hdh-CT2 in Hdh-CTR-L-transfected human embryonic kidney 293 cells. In silico docking model using SWISS-MODEL and HPEPDOCK server showed that the N-terminal residues in Hdh-CT1 are deeply inserted into the binding pocket of Hdh-CTR-L. Taken together, the identification of the Hdh-CT system provides a comprehensive insight into the functional CT-type signaling system in marine gastropods.
Graphitic nitrogen-doped carbon film/nanoparticle composite, in which the films were wrapped and separated by the nanoparticles, was prepared through a simple co-calcination route. Due to its unique porous structure and improved nitrogen content, the as-prepared electrode material could exhibit high specific capacitances of 317.5 F g− 1 at 0.5 A g− 1 and 200.0 F g− 1 at 20 A g− 1, and stable cycling behavior with no capacitance decline after 10,000 cycles in three-electrode system. When assembled in two-electrode capacitor, its specific capacitance could be well kept at 265.5 F g− 1 at 0.5 A g− 1, and thus the supercapacitor with a high energy density of 9.22 Wh kg− 1 was obtained. The superior energy storage properties of the as-prepared material indicate its promising application as high-performance carbon-based electrode for supercapacitors.
A substantial quantity of discarded tires has inflicted harm on the environment. Microwave pyrolysis of discarded tires emerges as an efficient and environmentally friendly method for their recycling. This research innovatively utilizes the characteristics of microwave rapid and selective heating to pyrolyze waste tires into porous graphene under the catalysis of KOH etching. Moreover, this study comprehensively investigates the dielectric characteristics and heating behavior of waste tires and different proportions of waste tire–KOH mixtures. It validates the preparation of graphene through KOH-catalyzed microwave pyrolysis of waste tires, tracking morphological and structural changes under varying temperature conditions. The results indicate that optimal dielectric performance of the material is achieved at an apparent density of 0.68 g/cm3 at room temperature. As the temperature increases, the dielectric constant gradually rises, particularly reaching a notable increase around 700 °C, and then stabilizes around 750 °C. Additionally, the study investigates the penetration depth and reflection loss of mixtures with different proportions, revealing the waste tire–KOH mass ratio of 1:2 demonstrates favorable dielectric properties. This research highlights the impressive microwave responsiveness of the waste tire–KOH mixture, Upon the addition of KOH, the mixed material exhibits an augmented dielectric constant and relative dielectric constant, supporting the viability of KOH-catalyzed microwave pyrolysis for producing porous graphene from waste tires. This method is expected to provide a new method for the valuable reuse of waste tires and a technology for large-scale, efficient and environmentally friendly production of graphene.