도로포장의 노면 마찰력은 노면 조직 특성에 큰 영향을 받으며, 이를 예측하기 위한 인자로써 MTD(Mean Texture Depth, 평균 노면 조직 깊이)를 주로 사용한다. 그러나 MTD는 노면 특성 중 노면 조직의 깊이만을 나타내므로 여러 요인이 복합적으로 구성되어 있는 노면 조직 특성을 포괄적으로 설명할 수 없다. 이에 선행 연구에서는 다양한 노면조직 특성을 반영하여 보다 적합한 마찰력 예측 식 을 제안하고자 하였다. 노면 마찰력에 영향을 미치는 노면 조직 특성을 정량화하기 위하여 3D 프린팅 시편을 제작한 후 BPT(British Pendulum Tester)를 이용해 노면 마찰력(BPN; British Pendulum Number)을 측정하였다. 선행 연구를 통하여 노면 마찰력에 영향을 미치 는 노면 조직을 MTD, EAN(Exposed Aggregate Number, 골재노출도) 및 골재 형상으로 선정하였으며, 이를 포함한 노면 마찰력 예측 식 을 제안하였다. 그러나 3D 프린팅 시편을 사용하여 제안한 노면 마찰력 예측식의 경우 이상적인 노면조직 특성에 기반하여 제안된 것 으로 실제 현장에서의 노면 조직 특성과 비교 및 검증이 이루어져야 한다. 이에 3D 프린팅 시편을 기반으로 개발된 노면 마찰력 예측 식의 현장 적용성 평가를 위하여 EACP(Exposed Aggregate Concrete Pavement), 밀입도 및 개립도 아스팔트 콘크리트 포장에서 188개의 노면 조직 데이터를 측정하였다. 현장 측정 데이터와 3D 프린팅 시편을 기반으로 개발된 노면 마찰력 예측 식을 비교 검토한 결과 MTD, EAN 및 골재 형상은 노면 마찰력 예측에 있어서 유의미한 지표로 사용될 수 있는 것으로 확인하였다.
본 연구는 기온 상승에 따른 개별 콘크리트 슬래브의 팽창과 그로 인한 Pavemnent Growth 및 Blow-up 현상을 분석하고 예측하기 위 해 수행되었다. 기온이 상승함에 따라 슬래브는 팽창하며, 콘크리트 슬래브들의 팽창량은 팽창 줄눈 사이에 존재하는 모든 수축 줄눈 이 닫히게 될 정도로 발생하게 되고 그 결과 모든 슬래브들이 접촉하게 된다. 온도의 추가적인 증가로 슬래브가 계속해서 팽창하게 되면 팽창 줄눈의 수축 허용 폭을 초과하는 경우 일체화된 슬래브 내에서 압축 응력이 발생하게 되며, 이러한 현상을 "Pavement Growth"라 정의된다. 이로 인해 콘크리트 포장은 팽창하면서 파손이나 균열에서 좌굴 및 파괴와 같은 압력 관련 문제를 일으킬 수 있 다. 이는 교량 및 도로 내 접근 구조물과 같은 인접 구조물에도 손상을 줄 수 있다. 그러나 현재 사용 가능한 이론적 해결책이나 Pavement Growth 평가 방법과 Blow-up 예측에 관한 연구는 매우 제한적이다. 따라서 본 연구에서는 콘크리트 포장의 팽창을 예측하기 위해 Pavement Growth 및 Blow-up 분석 모델인 PGBA(Pavement Growth and Blow-up Analysis) Model을 개발하였다. 이 모델은 기후 조 건, 포장 구조, 재료, 팽창 줄눈 등의 요인을 고려하였다. 본 모델은 일체화된 슬래브가 팽창하여 팽창 줄눈의 수축 허용 폭을 초과하 는 시기를 결정한다. 슬래브와 기층 사이의 Frictional Darg 및 슬래브의 End Restraint으로 인해 발생하는 압축 응력을 계산 할 수 있는 것이다. 또한 Geometric Imperfection의 변화에 따른 Blow-up Stress를 검토하기 위해 Large-scale Blow-up Test를 진행하였으며, 측정된 결과를 Blow-up 발생 임계값으로 사용하였다. 일체화된 슬래브 내부에 발생하는 연도별 압축 응력을 예측하고 Blow-up Stress와 비교 하여 압축 응력이 Blow-up Stress를 초과하는 시점을 Blow-up 발생 시기로 선정하였다.
Wet pavement friction decreases due to the increase in water film thickness (WFT), leading to a significant increase in vehicle crashes occurrences. The British Pendulum Test described in ASTM E303-93 is one of the methods used to measure pavement friction in wet conditions for the input of geometric design and pavement management systems. The British Pendulum Number (BPN) in wet conditions varies with WFT. Following ASTM E303-93 standard procedures, water film thickness was simulated by spraying water on the pavement surface. However, the measurement of BPN did not include specific information about the thickness of the water film present during testing. To address these issues, WFTs and BPNs were measured using artificial rainfall generated by a rainfall simulator across various intensities, drainage lengths, pavement slopes, and pavement surfaces. This study aims to investigate the influence of water film thickness on BPN for wet pavement friction and provide the WFT corresponding to each BPN measurement for different surface types. BPNs of three test slabs, including a smooth surface and tined surfaces with 16 mm and 25 mm spacing, were measured under wet conditions by spraying water, and by creating water film thicknesses using a rainfall simulator. This study demonstrates that the BPNs of non-tined surfaces and longitudinally and transversely tined surfaces with 25mm spacing exhibit a significant decrease with increasing water film thickness, while those with 16mm spacing show a slight decrease. These findings can be attributed to the lower friction observed in both non-tined and longitudinally tined pavements, in contrast to surfaces with transverse tinning.
PURPOSES : The skid resistance between tires and the pavement surface is an important factor that directly affects driving safety and must be considered when evaluating the road performance. In especially wet conditions, the skid resistance of the pavement surface decreases considerably, increasing the risk of accidents. Moreover, poor drainage can lead to hydroplaning. This study aimed to develop a prediction equation for the roughness coefficient—that is, an index of frictional resistance at the interface of the water flow and surface material—to estimate the thickness of the water film in advance to prevent human and material damage. METHODS : The roughness coefficient can be changed depending on the surface material and can be calculated using Manning's theory. Here, the water level (h), which is included in the cross-sectional area and wetted perimeter calculations, can be used to calculate the roughness coefficient by using the water film thickness measurements generated after simulating specific rainfall conditions. In this study, the pavement slope, drainage path length, and mean texture depth for each concrete surface type (non-tined, and tined surfaces with 25-mm and 16-mm spacings) were used as variables. A water film thickness scale was manufactured and used to measure the water film thickness by placing it vertically on top of the pavement surface along the length of the scale protrusion. Based on the measured water film thickness, the roughness coefficient could be back-calculated by applying Manning's formula. A regression analysis was then performed to develop a prediction equation for the roughness coefficient based on the water film thickness data using the water film thickness, mean texture depth, pavement slope, and drainage path length as independent variables. RESULTS : To calculate the roughness coefficient, the results of the water film thickness measurements using rainfall simulations demonstrated that the water film thickness increased as the rainfall intensity increased under N/T, T25, and T16 conditions. Moreover, the water film thickness decreased owing to the linear increase in drainage capacity as the mean texture depth and pavement slope increased, and the shorter the drainage path length, the faster the drainage, resulting in a low water film thickness. Based on the measured water film thickness data, the roughness coefficient was calculated, and it was evident that the roughness coefficient decreased as the rainfall intensity increased. Moreover, the higher the pavement slope and the shorter the drainage path length, the faster the drainage reduced the water film thickness and increased the roughness coefficient (which is an indicator of the friction resistance). It was also evident that as the mean texture depth increased, the drainage capacity increased, which also reduced the roughness coefficient. CONCLUSIONS : As the roughness coefficient of the concrete road surface changes based on the environmental factors, road geometry, and pavement surface characteristics, we developed a prediction equation for the concrete pavement roughness coefficient that considered these factors. To validate the proposed prediction equation, a sensitivity analysis was conducted using the water film thickness prediction equation from previous studies. Existing models have limitations on the impact of the pavement type and rainfall intensity and can be biased toward underestimation; in contrast, the proposed model demonstrated a high correlation between the calculated and measured values. The water film thickness was calculated based on the road design standards in Korea—in the order of normal, caution, and danger scenarios—by using the proposed concrete pavement roughness coefficient prediction model under rainy weather conditions. Specifically, because the normal and caution stages occur before the manifestation of hydroplaning, it should be possible to prevent damage before it leads to the danger stage if it is predicted and managed in advance.
PURPOSES : Recently, air pollution due to fine particulate matter has been increasing in Korea. Nitrogen oxides (NOx) are particulate matter precursors significantly contributing to air pollution. Increasing efforts have been dedicated to NOx removal from air, since it is particularly harmful. Application of titanium dioxide (TiO2) for concrete road structures is a suitable alternative to remove NOx. As the photocatalytic reaction of TiO2 is the mechanism that eliminates NOx, the ultraviolet rays in sunlight and TiO2 in existing concrete structures need to be contacted for the reaction process. For the application of vertical concrete road structures such as retaining walls, side ditches, and barriers, a pressurized TiO2 fixation method has been developed considering the pressure and pressurization time. In this study, longterm serviceability and repeatability were investigated on concrete specimens applying the dynamic pressurized TiO2 fixation method. Additionally, the environmental hazards of nitrate adsorbed on TiO2 particles were evaluated. METHODS : Concrete specimens to simulate roadside vertical concrete structures were manufactured and used to evaluate the long-term serviceability and repeatability of the dynamic pressurized TiO2 fixation method. The NOx removal efficiency was measured using NOx evaluation equipment based on ISO 22197-1. In addition, the nitrate concentration was measured using a comprehensive water quality analyzer for evaluating environmental hazards. RESULTS : As the experiment to evaluate the NOx removal efficiency of the dynamic pressurized TiO2 fixation method progressed from one to seven cycles, the nitrate concentration increased from 2.35 mg/L to 3.06 mg/L, and the NOx removal efficiency decreased from 53% to 25%. After seven cycles of NOx removal efficiency evaluation, the average nitrate concentration was 3.06 mg/L. The nitrate concentration collected immediately after the NOx removal efficiency test for each cycle was in the range of 2.51 to 2.57 mg/L. By contrast, it was confirmed that the nitrate concentration was lowered to approximately 2.1 mg/L when the surface was washed with water. CONCLUSIONS : The NOx removal efficiency was maintained at over 25% even after seven cycles of NOx removal efficiency evaluation, securing long-term serviceability. In addition, the harmful effects on the environment and human health are insignificant, since the nitrate concentration was less than 10 mg/L, in accordance with domestic and foreign standards. Practical applicability of the pressurized TiO2 fixation method was established by evaluating the long-term serviceability, repeatability, and environmental hazards.
PURPOSES : High temperatures induce excessive expansion in pavements, thus causing the closure of contraction joints between expansion joints. This results in the integration of slabs within the expansion joints into a unified slab. Compressive forces are generated owing to the friction that ensues between the unified slab and lower base layer. As the integrated slab expands and exceeds the allowable width of the expansion joint, the end restraint generates an additional compressive force. The escalating force, which reaches a critical threshold, induces buckling, thus compromising stability and causing blow-up incidents, which poses a significant hazard to road users. The unpredictable nature of blow-up incidents render their accurate prediction challenging because the compressive force within the slab must be predicted and the threshold for blow-up occurrence must be determined. METHODS : In this study, a GWNU blow-up model was developed to predict both the compressive force and period of blow-up incidents in jointed concrete pavements. The climate conditions, pavement structure, materials, and expansion joints were considered in this model. In the first stage of the model, the time at which the integrated slab expanded and surpassed the allowable width of the expansion joint was determined, and the compressive force was calculated. Subsequently, the compressive force within the integrated slab, considering both the end restraints and friction, was predicted. A large-scale blow-up test was performed to measure the blow-up force based on changes in the geometric imperfections. The measured blow-up force was adopted as the blow-up occurrence threshold, and the point at which the predicted compressive force within the slab exceeded the blow-up force was identified as the blow-up occurrence time. RESULTS : Using the GWNU blow-up model, the blow-up occurrence on the Seohean Expressway in Korea is predicted in the presence or absence of the alkali-silica reaction (ASR). Analysis is conducted using the expansion joint spacing and width as variables. As the expansion joint spacing increases, blow-up occurs sooner, and as the width increases, only the expansion joint life decreases. When applying an expansion joint spacing of 300 m and a width of 100 mm under an ASR with 99.9% TTPG reliability, the sum of the expansion joint life and blow-up occurrence time is 16 years. CONCLUSIONS : In the case of jointed concrete pavements where ASR occurred, installing an expansion joint spacing of 300 m and a width of 100 mm does not satisfy the design life of 20 years, and the expansion joint width minimally affect the blow-up occurrence time. To prevent blow-up incidents, a spacing of less than 300 m for the expansion joint is recommended. Based on the analysis results, the blow-up occurrence time and location can be predicted from the characteristics of the installed expansion joint, through which blow-up incidents can be prevented via preliminary maintenance.
PURPOSES : Pavement surface friction depends significantly on pavement surface texture characteristics. The mean texture depth (MTD), which is an index representing pavement surface texture characteristics, is typically used to predict pavement surface friction. However, the MTD may not be sufficient to represent the texture characteristics to predict friction. To enhance the prediction of pavement surface friction, one must select additional variables that can explain complex pavement surface textures. METHODS : In this study, pavement surface texture characteristics that affect pavement surface friction were analyzed based on the friction mechanism. The wavelength, pavement surface texture shape, and pavement texture depth were hypothesized to significantly affect the surface friction of pavement. To verify this, the effects of the three abovementioned pavement surface texture characteristics on pavement surface friction must be investigated. However, because the surface texture of actual pavements is irregular, examining the individual effects of these characteristics is difficult. To achieve this goal, the selected pavement surface texture characteristics were formed quantitatively, and the irregularities of the actual pavement surface texture were improved by artificially forming the pavement surface texture using threedimensionally printed specimens. To reflect the pavement surface texture characteristics in the specimen, the MTD was set as the pavement surface texture depth, and the exposed aggregate number (EAN) was set as a variable. Additionally, the aggregate shape was controlled to reflect the characteristics of the pavement surface texture of the specimen. Subsequently, a shape index was proposed and implemented in a statistical analysis to investigate its effect on pavement friction. The pavement surface friction was measured via the British pendulum test, which enables measurement to be performed in narrow areas, considering the limited size of the three-dimensionally printed specimens. On wet pavement surfaces, the pavement surface friction reduced significantly because of the water film, which intensified the effect of the pavement surface texture. Therefore, the pavement surface friction was measured under wet conditions. Accordingly, a BPN (wet) prediction model was proposed by statistically analyzing the relationship among the MTD, EAN, aggregate shape, and BPN (wet). RESULTS : Pavement surface friction is affected by adhesion and hysteresis, with hysteresis being the predominant factor under wet conditions. Because hysteresis is caused by the deformation of rubber, pavement surface friction can be secured through the formation of a pavement surface texture that causes rubber deformation. Hysteresis occurs through the function of macro-textures among pavement surface textures, and the effects of macro-texture factors such as the EAN, MTD, and aggregate shape on the BPN (wet) are as follows: 1) The MTD ranges set in this study are 0.8, 1.0, and 1.2, and under the experimental conditions, the BPN (wet) increases linearly with the MTD. 2) An optimum EAN is indicated when the BPN (wet) is the maximum, and the BPN decreases after its maximum value is attained. This may be because when the EAN increases excessively, the space for the rubber to penetrate decreases, thereby reducing the hysteresis. 3) The shape of the aggregate is closely related to the EAN; meanwhile, the maximum value of the pavement surface friction and the optimum EAN change depending on the aggregate shape. This is believed to be due to changes in the rubber penetration volume based on the aggregate shape. Based on the results above, a statistical prediction model for the BPN (wet) is proposed using the MTD, EAN, and shape index as variables. CONCLUSIONS : The EAN, MTD, and aggregate shape are crucial factors in predicting skid resistance. Notably, the EAN and aggregate shape, which are not incorporated into existing pavement surface friction prediction models, affect the pavement surface friction. However, the texture of the specimen created via three-dimensional printing differs significantly from the actual pavement surface texture. Therefore, the pavement surface friction prediction model proposed in this study should be supplemented with comparisons with actual pavement surface data in the future.
PURPOSES : The increase in particulate matter due to increased air pollutant emissions has become a significant social issue. According to the Ministry of Environment, air pollutants emitted from large-scale businesses in 2022 increased by 12.2% compared to the previous year, indicating that air pollution is accelerating owing to excessive industrialization. In this study, TiO2, which is used to reduce airborne particulate, was used. The TiO2 coating fixation and dynamic pressure coating-type TiO2 fixation methods were used to solve the material peeling phenomenon caused by gravity, which is a limitation when the TiO2 penetration method is applied to a vertical concrete structure along the road. The long-term durability and performance were analyzed through environmental resistance and NOx removal efficiency evaluation experiments. These analyses were then assessed by comparing the NOx removal efficiency with the dynamic pressure permeationtype TiO2 fixation method used in previous studies. METHODS : To evaluate the long-term durability and performance of the TiO2 coating fixation method and dynamic pressure coating TiO2 fixation method for vertical concrete structures, specimens were manufactured based on roadside vertical concrete structures. Environmental resistance tests such as the surface peeling resistance test (ASTM C 672) and freeze-thaw resistance test (KS F 2456) were conducted to evaluate the long-term durability. To evaluate the long-term performance, the NOx removal efficiency of TiO2 concrete owing to road surface deterioration during the environmental resistance test was evaluated using the NOx removal efficiency evaluation equipment based on the ISO 22197-1 standard. This evaluation was compared and analyzed using the dynamic pressure infiltration TiO2 fixation method. RESULTS : The long-term durability of the TiO2 coating fixation and dynamic pressure coating TiO2 fixation methods were evaluated using environmental resistance tests. During the surface peeling resistance test, the TiO2 material degraded and partially detached from the concrete. However, the NOx removal efficiency was ensured by the non-deteriorated and fixed TiO2 material. The long-term performance was confirmed through a freeze-thaw resistance test to evaluate the NOx removal efficiency after 300 cycles of surface deterioration. The results showed that when the TiO2 coating fixation and dynamic pressure infiltration TiO2 fixation methods were applied to vertical concrete structures, the durability of the structure was not compromised. In comparison to the dynamic pressure infiltration TiO2 fixation method, the NOx removal efficiency observed during the surface peeling resistance test was lower, while the freeze-thaw test exhibited notably higher removal efficiency. CONCLUSIONS : To solve the material peeling phenomenon caused by gravity, the long-term durability and performance were evaluated by applying the TiO2 coating fixation and dynamic pressurized coating TiO2 fixation methods to vertical concrete specimens. Long-term durability was confirmed through environmental resistance tests, and long-term utility was secured by measuring the NOx removal efficiency according to surface degradation. These findings show that implementing the TiO2 coating fixation method and dynamic pressure coating TiO2 fixation methods on-site effectively reduce NOx.
PURPOSES : During the summer of 2018, a heat wave (temperatures > 33°C) lasted for more than 30 days, causing blow-ups at eight different locations in South Korea. The blow-up phenomenon occurred when the internal temperature of the concrete slab increased. Simultaneously, as the concrete slab expands excessively, the length of the end of the slab increases, thus resulting in a lateral compressive force; when the slab cannot withstand this force, it rises or breaks. Blow-up is caused by a variety of factors, including increased temperature and humidity, accumulation of incompressible substances inside discontinuous surfaces, alkali–silica reactions, and aging of the concrete pavement. Several researchers have presented models to forecast blow-ups, such as the A. D. Kerr and G. Yang models, which have been applied to explain the blow-up phenomenon. However, this model has some limitations. This paper discusses a method to overcome these limitations.
METHODS : Buckling, the most important theory describing the blow-up phenomenon, was reviewed, and the buckling principle was confirmed. Subsequently, the input variables of the Kerr and Yang models and the mechanism for predicting the occurrence of blow-ups were identified. The PGBA program was used to confirm the lifetime of the expansion joint and the blow-up occurrence time based on the expansion joint spacing to review the limitations of the two studied models.
RESULTS : The Kerr and Yang models did not consider variables such as the expansion joint spacing or length of the integrated adjacent slab. In other words, it is necessary to reconsider the appropriateness of blow-up time predictions in relation to changes in expansion joint spacing and slab length. The expansion joint lifetime and blow-up occurrence time were predicted using the PGBA program. It was confirmed that as the expansion joint spacing increases, the expansion joint lifetime decreases. However, the blow-up occurrence time was shown to be the same (equal to 59 years), which is a limitation of the Kerr and Yang models used in the PGBA program. This resulted in a limitation in which variables for the expansion joint spacing cannot be used.
CONCLUSIONS : Through blow-up simulation experiments and actual field data, an appropriate slab length should be determined, and a blow-up model should be developed based on the slab length. If a blow-up prediction based on concrete slab length and a blow-up model based on are developed, the blow-up prevention technology will be applied to the appropriate blow-up time and location to avoid traffic accidents and reduce human and property damage.
PURPOSES : Advancements in science and technology caused by industrialization have led to an increase in particulate matter emissions and, consequently, severity of air pollution. Nitrogen oxide (NOx), which accounts for 58% of road transport pollutants, adversely affects both human health and the environment. A test-bed was constructed to determine NOx removal efficiency at the roadside. TiO2, a material used to reduce particulate matter, was used to remove NOx. It was applied to a vertical concrete structure using the dynamic pressurized penetration TiO2 fixation method, which can be easily applied to vertical concrete structures. This study was conducted to evaluate the NOx removal efficiency of the dynamic pressurized-penetration TiO2 fixation method in a test-bed under real roadside conditions.
METHODS : A test-bed was constructed in order to determine the NOx removal efficiency using the dynamic pressurized penetration TiO2 fixation method on the roadside. The dynamic pressurized-penetration TiO2 fixation method was applied by installing a vertical concrete structure. NOx was injected into the test-bed using an exhaust gas generator. By installing a shading screen, the photocatalytic reaction of TiO2 was suppressed to a maximum concentration of 1000 ppb along the roadside. The removal efficiency was evaluated by measuring NOx concentrations. In addition, illuminance was measured using an illuminance meter.
RESULTS : From the results of the analysis of the NOx removal efficiency in the test-bed which the dynamic pressurized type TiO2 fixation method was applied to, an average removal efficiency ranging from 18% to 40% was achieved, depending on the illuminance. Similarly, according to the results of the evaluation of the NO removal efficiency, an average of removal efficiency ranging from 20% to 62% was achieved. Thus, the NOx removal efficiency increased when the illuminance was high.
CONCLUSIONS : From the results of the experiment conducted, the efficiency of NOx removal per unit volume was obtained according to the illuminance of TiO2 concrete along an actual road. Field applicability of the dynamic pressurized-penetration-type TiO2 fixation method to vertical concrete structures along roads was confirmed.
PURPOSES : Recently, air pollution caused by particulate matter has been worsening. Among the substances generating particulate matter, NOx is the main precursor of particulate matter and is widely distributed in areas with a high volume of traffic. TiO2 has been used as a material for removing NOx through a chemical reaction as a photocatalyst. In this context, the reduction of NOx through TiO2 concrete is proposed. However, the research on the surface deterioration on the performance of TiO2 concrete is not documented yet. Therefore, the objective of this study was to evaluate the long-term durability and NOx removal efficiency of TiO2 concrete by considering the concrete surface deterioration.
METHODS : Freezing–thawing resistance test (KS F 2456) and scaling test (ASTM C 672) were performed to investigate the variation in the TiO2 penetration distribution and NOx removal efficiency of TiO2 concrete corresponding to surface deterioration. The long-term durability of TiO2 concrete was evaluated through an environmental resistance test and changes in TiO2 penetration depth and distribution characteristics. In addition, the NOx removal efficiency of TiO2 concrete was evaluated as surface deterioration occurs. RESULTS : As a result of the freeze–thawing resistance test, a relative dynamic elastic modulus of more than 80 % was detected. In addition, a TiO2 penetration depth of 0.3 mm, NOx removal efficiency of 11.2 %, and a 30 % of TiO2 surface prediction mass ratio were achieved after 300 cycles. As a result of visual observation of the scaling test, “0, no scaling” was secured. After 50 cycles of scaling test, the TiO2 penetration depth, NOx removal efficiency, and TiO2 surface prediction mass ratio were 0.3 mm, 36.3 %, and 63 %, respectively. Through the results of the environmental resistance test, the excellent long-term durability and NOx removal efficiency of TiO2 concrete were confirmed.
CONCLUSIONS : As a result of the experiment, long-term durability and NOx removal efficiency of TiO2 concrete were secured. The application of TiO2 concrete can be a good alternative with long-term performance and durability.
PURPOSES : The exposed aggregate number (EAN) and mean texture depth (MTD) of exposed aggregate concrete pavement (EACP) influence the functional performance of EACP in terms of pavement noise and skid resistance. The selection of the exposure time of EACP is important because the designed EAN and MTD of EACP can be achieved when the exposure process is performed at an appropriate time. On the one hand, too early exposure may cause protrusions and unwanted removal of aggregates and mortar. On the other hand, late exposure may cause difficulty in exposure of the mortar. In this study, a method to determine the optimum exposure time for EACP is suggested using a non-destructive method.
METHODS : A set of laboratory tests was performed to investigate the variation in EAN and MTD of EACP according to the elastic modulus obtained by non-destructive equipment. From the results of this investigation, the optimum exposure time using the non-destructive method and the exposure time window (ETW) method was suggested. In addition, the usefulness of ETW suggested by laboratory tests was verified from a field application.
RESULTS : From the laboratory tests, it was found that the targets of the surface condition of EACP (EAN: 59 per 25 cm2, MTD: 1.39 mm) can be achieved when the concrete elastic modulus is higher than 20GPa. The proposed guideline using the non-destructive method was applied for the field construction of EACP and achieved similar results.
CONCLUSIONS : It was found that the proposed guideline for determining the exposure time window based on non-destructive testing is useful.
PURPOSES : Nitrogen oxides (NOx) are the main precursors to generate fine particulate matter, which significantly contribute to air pollution. NOx gases are transmitted into the atmosphere in large quantities, especially in areas with a high volume of traffic. Titanium dioxide (TiO2), which is a photocatalytic reaction material, is very efficient for removing NOx. The application of TiO2 to concrete road structures is a good alternative to remove NOx. Generally, TiO2 concrete is produced by mixing concrete with TiO2 . However, a significant amount of TiO2 in concrete cannot be exposed to air pollutants or UV. Therefore, an alternative method of penetrating TiO2 into horizontal concrete structures using a surface penetration agent was proposed in a previous study. This method may not only be economical but also applicable to various types of horizontal concrete structures. However, the TiO2 penetration method may not be applied to vertical structures because it has a mechanism for the penetration of TiO2-containing penetration agents via gravity and capillary forces. Therefore, this study aimed to evaluate the applicability of the pressurized TiO2 fixation method for existing vertical road structures.
METHODS : For the application of vertical concrete structures — such as retaining walls, side ditches, and barriers — the applicability of a static and dynamic pressurized TiO2 fixation method was evaluated according to the experimental conditions, considering the amount of pressure and time. The penetration depth and distribution of TiO2 particles in the concrete specimen were measured using SEM/EDAX. In addition, the NOx removal efficiencies of TiO2 concrete were evaluated using the NOx analysis system.
RESULTS : As a result of measuring the penetration depth and distribution of TiO2 in the concrete, it was found that the surface-predicted mass ratio increased with increasing pressure and time. In the case of the static pressurized fixation method, it was confirmed that a pressure time of at least 10 s at a pressure of 0.2 MPa and 5 s at a pressure higher than 0.3 MPa were required to achieve a NOx removal efficiency higher than 40 %. Conversely, for the dynamic pressurized fixation method applying a hitting energy of 16.95 J, NOx removal efficiencies higher than 50 % were secured in a pressure time of more than 3 s.
CONCLUSIONS : The results of this study showed that the static and dynamic pressurized TiO2 fixation method was advantageous in penetrating and distributing TiO2 particles into the concrete surface to effectively remove NOx. It was confirmed that the proposed method to remove NOx was sufficiently applicable to existing vertical concrete road structures.
PURPOSES : NOx is a particle matter precursor that is harmful to humans. Various methods of removing NOx from the air have been developed. TiO2 and activated carbon are particularly useful materials for removing NOx, and the method is known as particulate matter precursor reduction. The removal of NOx using TiO2 requires sunlight for the photocatalytic reaction, whereas activated carbon absorbs NOx particles into its pores after contact with the atmosphere. The purpose of this study is to evaluate the NOx removal efficiency of TiO2 and activated carbon applied to concrete surfaces using the penetration method.
METHODS : Surface penetration agents, such as silane-siloxane and silicate, were used. Photocatalyst TiO2 and adsorbent activated carbons were selected as the materials for NOx removal. TiO2 used in this study was formed by crystal structures of anatase and rutile, and plant-type and coal-type materials were used for the activated carbon. Each surface penetration agent was mixed with each particulate matter sealer at a concentration ratio of 8:2, and the mixtures were sprayed onto the surface. The NOx removal efficiency was evaluated using NOx removal efficiency equipment fabricated in compliance with the ISO 22197-1 standard.
RESULTS : Anatase TiO2 showed a maximum NOx removal efficiency of 48% when 500 g/m² was applied. However, 500 g/m² of rutile TiO2 showed a NOx removal efficiency of up to 10%. When 700 g/m² of coal-based activated carbon and plant-based activated carbon was used, NOx removal efficiencies of up to 11% and 14%, respectively, were obtained.
CONCLUSIONS : Rutile TiO2, a coal-based activated carbon, and plant-based activated carbon have lower NOx removal efficiencies than anatase TiO2. A lower amount of anatase TiO2 (500 g/m²), compared to the other spraying volumes, yielded the most significant NOx removal efficiency under optimal conditions. Therefore, it is recommended that 500 g/m² of anatase TiO2 should be sprayed onto concrete structures to improve the economic and long-term performance of these structures.
PURPOSES : Concrete pavement is excellent in structural performance and durability. However, its functionality – such as noise and skid resistance – is a shortcoming. Functionality such as noise reduction and skid resistance of concrete pavement is affected by the texture surface, and the texture surface is classified according to the length of the wavelength. In recent years, Fine-size exposed aggregate concrete pavement has been applied, which has excellent structural performance and durability, and secures functionalities such as noise reduction and long-term skid resistance by randomly forming texture surface. Fine-size exposed aggregate concrete pavements are constructed by removing the surface cement binder to randomly expose coarse aggregate and their functionality is mainly governed by the surface texture. However, deteriorated concrete by tire-pavement friction and deicing agent may cause abrasion and aggregate loss on the surface texture; thus reducing their functional performances. Abrasion is created by the thin cutoff of aggregate texture under repeated tire-pavement friction. In addition, aggregate loss is defined by the detachment of aggregates from cement binder. This study aims to evaluate the abrasion and aggregate loss of Fine-size exposed aggregate concrete pavement surface texture under tire-pavement friction and scaling tests.
METHODS : In the study, abrasion and aggregate loss of tining and exposed aggregate concrete surface treatments were evaluated. Deterioration of each surface treatment was replicated by scaling test under ASTM C 672 test method. Afterward, abrasion test was conducted by ASTM C779 to simulate the tire-pavement friction under traffic. Consequently, abrasion and aggregate loss were measured.
RESULTS : Abrasion depth of non-scaling tining, 10-mm EACP, and 8-mm EACP was 1.76, 1.12, and 1.01mm, respectively. Compared to scaling surface treatments, the difference of abrasion depth in tining texture was the largest with value of 0.4mm. For both textures of finesize exposed aggregate concrete, abrasion depth difference was about 0.1mm. Moreover, The 10-mm EACP exhibited a 2.6% of aggregate loss rate caused by tire-pavement friction before conducting concrete deterioration test. After 40-cycle scaling test, aggregate loss increased up to 12.2%. For 8-mm EACP, aggregate loss rate was 1.7% on non-scaling concrete. Further, this rate was magnified up to 7.3% for the 40-cycle scaling concrete.
CONCLUSIONS : Under non-scaling or scaling tests, fine-size exposed aggregate concrete pavement showed better abrasion resistance than tining texture since tining was formed by aggregates and cement binder. Additionally, rate of aggregate loss was significant when EACP experienced the deicing agent under numerous cycles of freeze-thaw action.
PURPOSES : Pavement growth (PG) of concrete pavement has been recognized as a major concern to highway and airport engineers as well as to road users for many years. PG is caused by the pressure generation in the concrete pavement as a result of a rise of the concrete temperature and moisture. PG could result in concrete pavement blowup and damage the adjacent or the nearby structures such as bridge structures. The amount of the PG is affected by the complicated interactions of numerous factors such as climatic condition, amounts of incompressible particles (IP) infiltration into the joints, pavement structure, and materials. Trigger temperature for pavement growth (TTPG) is defined as the concrete temperature when all transverse cracks or joints within the expansion joints completely close and generating a pressure in the pavement section. It is one of the most critical parameters to evaluate the potential of PG occurring in the pavement. Unfortunately, there are no available methods or guidelines for estimating TTPG. Therefore, this study aims to provide a methodology to predict TTPG of a concrete pavement section.
METHODS : In this study, a method to evaluate the TTPG and its influencing factors using the field measured data of concrete pavement expansions is proposed. The data of the concrete pavement expansions obtained from the long-term monitoring of three concrete pavement sections, which are I-70, I-70N, and Md.458, in Maryland of United Stated, were used. The AASHTO equation to estimate the joint movement in concrete pavement was used and modified for the back-calculation of the TTPG value. A series of the analytical and numerical solutions presented in the literatures were utilized to predict the friction coefficient between the concrete slab-base and to estimate the maximum concrete temperature of these three pavement sections.
RESULTS : The estimated maximum concrete temperature of these three pavement sections yearly exhibited relatively constant values, which range from 40 to 45 °C. The results of the back-calculation revealed that the TTPG of the I-70 and Md.58 sections decreased with time. However, the TTPG of the I-70N section tended to be relatively constant from the first year of the pavement age.
CONCLUSIONS : The estimation of the TTPG for the three concrete pavement sections showed that the values of the TTPG gradually decreased although the yearly maximum concrete pavement temperature did not change significantly.
PURPOSES: Nitrogen oxide (NOx) is a particulate matter precursor, which is a harmful gas contributing to air pollution and causes acid rain. The approaching methods for NOx removal from the air are the focus of numerous researchers worldwide. Titanium dioxide (TiO2) and activated carbon are particularly useful materials for NOx removal. The mechanism of NOx elimination by using TiO2 requires sunlight for a photocatalytic reaction, while activated carbon absorbs the NOx particle into the pore itself after contact with the atmosphere. The mixing method of these two materials with concrete, coating, and penetration methods on the surface is an alternative method for NOx removal. However, this mixing method is not as efficient as the coating and penetration methods because the TiO2 and the activated carbon inside the concrete cannot come in contact with sunlight and air, respectively. Hence, the coating and penetration methods may be effective solutions for directly exposing these materials to the environment. However, the coating method requires surface pretreatment, such as milling, prior to securing contact, and this may not satisfy economic considerations. Therefore, this study aims to apply TiO2 and activated carbon on the concrete surface by using the penetration method.
METHODS : Surface penetrants, namely silane siloxane and silicate, were used in this study. Photocatalyst TiO2 and adsorbent activated carbons were selected. TiO2 was formed by the crystal structures of anatase and rutile, while the activated carbons were plant- and coal-type materials. Each penetrant was mixed with each particulate matter reductant. The mixtures were sprayed on the concrete surface using concentration ratios of 8:2 and 9:1. A scanning electron microscopy with energy dispersive X-ray equipment was employed to measure the penetration depth of each specimen. The optimum concentration ratio was selected based on the penetration depth.
RESULTS: TiO2 and activated carbon were penetrated within 1 mm from the concrete surface. This TiO2 distribution was acceptable because TiO2 and activated carbon locate to where they can directly come in contact with sunlight and air pollutant, respectively. Infiltration to the concrete surface was easily achieved because the concrete voids were bigger than the nanosized TiO2 and microsized activated carbon. The amount of penetration for each particulate matter reductant was measured from the concrete surface to a certain depth.
CONCLUSIONS : The mass ratio on the surface can be predicted from the mass ratio of the particulate matter reductant measurement distributed through the penetration depth. The optimum mass ratio was also presented. Moreover, the mixtures of TiO2 with silane siloxane and activated carbon with silicate were recommended with an 8:2 concentration ratio.