Climatic change affects agricultural, environmental and livestock production. Forage productivity is highly dependent on the weather change. The Pyeongchang region has more difficulty in cultivation of Sorghum-Sudangrass hybrids (SSH) than other warm regions because of the cold weather. This experiment was carried out to analysis the agronomic characteristics, productivity, and nutritive value of three cultivars of Sorghum-Sudangrass hybrids in the Pyeongchang region from 2021 to 2022. Two harvests were taken in each year, and the agronomic characteristics, dry matter yield, and nutrient content of the whole SSH crops were determined. The plant height ranged between 281-291 cm and 165-172 cm in the first and second harvest, respectively. Plant height of Superdan (291±49 cm) was the highest in the first cut and Dairy mens Dream (172±30 cm) was the highest in the second cut time. Stem diameter ranged from 9.5 to 8.8 mm with Superdan having a higher level than the other two cultivars. The Dairy mens Dream variety produced significantly higher dry matter yield (15,695 kg/ha) than those of Superdan (14,584 kg/ha) and Supergreen (14,300 kg/ha) over a two-year experimental period. In terms of nutritional quality, the crude protein content, neutral detergent fiber and acid detergent fiber of SSH cultivars were analysed. There were no significant changes in the content of CP, ADF and NDF ranges among the cultivars. In addition, the Superdan cultivar had slightly higher CP content (10.17%) and was followed by Dairy mens Dream (9.84%) and Supergreen (9.54%) in the second cut time of 2-year average. Dairy mens dream had lower ADF and NDF values than other cultivars; however, no significant differences amongst cultivars in fiber content were observed. Therefore, these three cultivars displayed the potential growth characteristics, DM yield and nutritive values in Pyeongchang region. Hence, the SSH cultivars have a potential to withstand the climatic change and improve SSH productivity in the study area.
In this study, the safety and efficacy of an spot on formulation composed of Fluralaner (40mg/kg)and Moxidectin (2mg/kg) against internal and external parasites was evaluated in Korean cats. The product was developed as a topical use in cats to prevent or control internal and external parasites including ticks, fleas, gastrointestinal parasites, ear mite and heartworm. As a result of the study, targeted for total 30 cats from 8 Korean animal hospitals, this combination of Fluralaner and Moxidectin was found to be very safe in cats, and its effectiveness against external parasites (ticks, fleas, and ear mites) was fully verified. In addition, As the animals exposed in the infective circumstances of heartworm and gastrointestinal parasites were remained negative during the study period of 12 weeks after treatment of test drug, it was determined that this product had a potential preventive effect against the heartworms and gastrointestinal parasites.
Lumpy Skin Disease (LSD) and Foot-and-Mouth Disease (FMD) cause substantial economic losses on the livestock industry. Therefore, vaccinations have been implemented as the control strategy in endemic countries. However, the potential adverse effects of administering vaccines for both diseases simultaneously have not been thoroughly evaluated. The aim of this study was to assess the impact of vaccinating dairy cows with either or both LSD and FMD vaccines on milk production and physiological parameters such as milk temperature, rumination time and body weight. The experimental groups were divided into four according to the injection materials: 1) saline, 2) LSD vaccine, 3) FMD vaccine, and 4) both vaccines. The impact of vaccination on milk yield and physiological parameters was evaluated daily until 12 days post-vaccination, and milk components were analyzed twice, once per week. Among the experimental groups as well as each vaccine group, no statistically significant differences (p < 0.05) were observed at milk yield, milk components, or milk temperature. This suggests that simultaneous vaccination of LSD and FMD can be administered without adverse effects.
Habenaria radiata, commonly known as the Egret Flower, is a critically endangered terrestrial orchid facing rapid population decline due to overharvesting in Korea. Asymbiotic seed propagation offers a promising conservation method for this rare species. This study investigates the effects of different nutrient media on the germination and plantlet development of immature seeds of H. radiata, with the goal of establishing optimal propagation conditions. Among four media types, with the highest germination rate (75.6%) observed on OBTSG medium, followed by 1/2 MS, OMM, and OSGM. Protocorm development varied across media, with OBTSG and OMM supporting the most robust growth. A two-step culture method involving OBTSG for germination followed by OMM for plantlet development proved most effective, achieving an 84.4% survival rate. These findings highlight the importance of media composition and transitioning for successful propagation. The results provide a practical protocol for in vitro propagation, contributing to both in situ and ex situ conservation efforts aimed at preserving H. radiata and other endangered terrestrial orchids.
기후변화로 인해 국내에서의 기온, 강수량, 호우일수가 증가 할 것으로 예측됨에 따라, 토양 답압과 높은 불투수면적 비율이 나타나는 도심지를 중심으로 정원과 공공녹지에 활용되는 식물 소재에 있어 내침수성이 중요한 특성으로 부각될 가능성이 높 다. 그러나 내침수성 식물소재에 대한 대다수의 문헌은 재배경 험이나 각 종의 서식지 환경에 기반하고 있는 경우가 많아 실험 적 검증이 필요하다. 따라서 본 연구는 토양수분함량이 높은 서식지에서 기원한 골등골나물(Eupatorium lindleyanum DC.), 새등골나물(E. fortunei Turcz.), 좀개미취(Aster maackii Regel) 3개 종과 중간인 서식지에서 기원한 까실쑥부쟁이 (A. ageratoides Turcz.) 1개 종의 침수조건에 대한 생육반응 비교로 서식지 환경이 내침수성 평가의 유효한 지표인지 알아보 고자 하였다. 실험대상 종을 6주간 무처리(대조구), 5일 침수처리, 7일 침수처리한 결과, 골등골나물과 새등골나물은 대조구와 처리구간 생육반응에서 유의한 차이가 관찰되지 않아 높은 수준 의 내침수성을 지니는 것으로 나타났다. 좀개미취는 생장반응이 처리구에서 대조구 대비 유의하게 감소하여 내침수성은 제한적 인 것으로 보였으나, 5일 침수처리구에서 광계 II의 최대양자효 율(Fv/Fm)이, 두 처리구 모두에서 지상부 대비 지하부의 비율 (R/S율)이 대조구와 유의한 차이를 보이지 않아 침수조건의 해 소 후 회복 가능성을 지니는 것으로 나타났다. 까실쑥부쟁이는 처리 4 주차에 모든 처리구에서 100%의 고사율을 보여 내침수 성을 갖추지 못한 것으로 판단되었다. 결론적으로, 서식지 환경 은 내침수성과 관련이 있다 할 수 있었으나, 내침수성의 정확한 평가를 위해서는 토양수분함량 외 다양한 환경요소들을 함께 고려해야할 필요성이 있을 것으로 보인다.
The Japanese encephalitis virus (JEV) is a zoonotic pathogen that affects the nervous systems of humans, pigs, and horses. It has been classified into five genotypes (G1-G5) based on molecular analysis of the pre-membrane or envelope gene. In the Republic of Korea, the predominant JEV genotype has recently shifted from G3 to G1 and G5, highlighting the need for a rapid and accurate diagnostic method. In this study, we designed specific common and differential primer sets for JEV G1, G3, and G5 to detect the JEV gene. Four specific primer sets for JEV G1, G3, and G5 were used to selectively amplify the target gene. The detection limits of the common primer set for JEV G1, G3, and G5 were 100, 0.1, and 10 TCID50/reaction, respectively. The detection limits of the three differential primer sets were 1, 0.1, and 1 TCID50/reaction, respectively. No cross-reactivity was observed with non-JEV reference viruses. We successfully developed a multiplex reverse transcription polymerase chain reaction (RT-PCR) assay to distinguish the three JEV genotypes. Our multiplex RT-PCR assay is highly sensitive and specific, providing a reliable tool for confirming JEV infection in suspected samples. Additionally, our assay can be applied to suspected mosquito samples and commercial veterinary biological products.
Bearing-shaft systems are essential components in various automated manufacturing processes, primarily designed for the efficient rotation of a main shaft by a motor. Accurate fault detection is critical for operating manufacturing processes, yet challenges remain in sensor selection and optimization regarding types, locations, and positioning. Sound signals present a viable solution for fault detection, as microphones can capture mechanical sounds from remote locations and have been traditionally employed for monitoring machine health. However, recordings in real industrial environments always contain non-negligible ambient noise, which hampers effective fault detection. Utilizing a high-performance microphone for noise cancellation can be cost-prohibitive and impractical in actual manufacturing sites, therefore to address these challenges, we proposed a convolution neural network-based methodology for fault detection that analyzes the mechanical sounds generated from the bearing-shaft system in the form of Log-mel spectrograms. To mitigate the impact of environmental noise in recordings made with commercial microphones, we also developed a denoising autoencoder that operates without requiring any expert knowledge of the system. The proposed DAE-CNN model demonstrates high performance in fault detection regardless of whether environmental noise is included(98.1%) or not(100%). It indicates that the proposed methodology effectively preserves significant signal features while overcoming the negative influence of ambient noise present in the collected datasets in both fault detection and fault type classification.
Seeds of some barberry species have embryo with physiological dormancy that requires a cold stratification for germination. Berberis amurensis Rupr. is a native species of Japan, Korea, the Russian far east, and parts of China. This specific plant is important for its edible fruits and rhizomes with high medicine value. This study aimed to determine the effect of stratification on germination and physiological change of B. amurensis. Seeds were placed on sterilized sand medium moistened with distilled water in 9 cm diameter petri dishes and stored at 4 and 25˚C for 0, 15, 30, 45 and 60 days. Each treatment had 40 seeds per replica, and three repetitions per treatment. Immediately after stratification, total phenolics contents (TPC) was analyzed and seeds incubated at 15/6˚C for 12 weeks. Warm stratification had a significant effect on seed forcing for germination than cold stratification treatment. At 25˚C for 60 days, stratified seed showed highest germination percentage (25.7±4.3%) and germination started in 14 days of the stored period. Whereas TPC was significantly decreased with increasing stored period. Contrastively, cold stratification had no effect on the germination ability. In the same way germination percentage of non-stratified seeds were also zero. The results confirmed that B. amurensis seeds were in a dormant state and warm stratification increased the germination ability by breaking of dormancy.