검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 66

        5.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mesocrystals are macroscopic structures formed by the assembly of nanoparticles that possess distinct surface structures and collective properties when compared to traditional crystalline materials. Various growth mechanisms and their unique features have promise as material design tools for diverse potential applications. This paper presents a straightforward method for metal–organic coordination-based mesocrystals using nickel ions and terephthalic acid. The coordinative compound between Ni2+ and terephthalic acid drives the particle-mediated growth mechanism, resulting in the mesocrystal formation through a mesoscale assembly. Subsequent carbonization converts mesocrystals to multidirectional interconnected graphite nanospheres along the macroscopic framework while preserving the original structure of the Ni-terephthalic acid mesocrystal. Comprehensive investigations demonstrate that multi-oriented edge sites and high crystallinity with larger interlayer spacing facilitate lithium ion transport and continuous intercalation. The resulting graphitic superparticle electrodes show superior rate capability (128.6 mAh g− 1 at 5 A g− 1) and stable cycle stability (0.052% of capacity decay per cycle), certifying it as an advanced anode material for lithium-ion batteries.
        4,000원
        6.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Efforts have been extensively undertaken to tackle overheating problems in advanced electronic devices characterized by high performance and integration levels. Thermal interface materials (TIMs) play a crucial role in connecting heat sources to heat sinks, facilitating efficient heat dissipation and thermal management. On the other hand, increasing the content of TIMs for high thermal conductivity often poses challenges such as poor dispersion and undesired heat flow pathways. This study aims to enhance the through-plane heat dissipation via the magnetic alignment of a hybrid filler system consisting of exfoliated graphite (EG) and boron nitride (BN). The EG acts as a distributed scaffold in the polymer matrix, while the BN component of the hybrid offers high thermal conductivity. Moreover, the magnetic alignment technique promotes unidirectional heat transfer pathways. The hybrid exhibited an impressive thermal conductivity of 1.44 W m− 1 K− 1 at filler contents of 30 wt. %, offering improved thermal management for advanced electronic devices.
        4,000원
        9.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study prepares highly porous carbon (c-fPI) for lithium-ion battery anode that starts from the synthesis of fluorinated polyimide (fPI) via a step polymerization, followed by carbonization. During the carbonization of fPI, the decomposition of fPI releases gases which are particularly from fluorine-containing moiety (–CF3) of fPI, creating well-defined microporous structure with small graphitic regions and a high specific surface area of 934.35 m2 g− 1. In particular, the graphitic region of c-fPI enables lithiation–delithiation processes and the high surface area can accommodate charges at electrolyte/electrode interface during charge–discharge, both of which contribute electrochemical performances. As a result, c-fPI shows high specific capacity of 248 mAh g− 1 at 25 mA g− 1, good rate-retention performance, and considerable cycle stability for at least 300 charge–discharge cycles. The concept of using a polymeric precursor (fPI), capable of forming considerable pores during carbonization is suitable for the use in various applications, particularly in energy storage systems, advancing materials science and energy technologies.
        4,000원
        10.
        2024.04 구독 인증기관·개인회원 무료
        The baculovirus expression system (BES) utilize the p10 or polyhedrin promoter, a very late promoter that exhibits strong transcriptional activity primarily at the end of viral infection, to produce useful recombinant proteins. The burst sequence of the very late promoter is essential for strong transcription, and VLF-1 is a transcription factor that binds specifically to the burst sequence, and it has been reported that it can regulate the amount and timing of expression of protein by the very late promoter. Recently, a VLF-1 constitutively expressing cell line was constructed to increase the production of the target protein, but the effect was minimal. In this study, to find the optimal VLF-1 expression conditions to increase target protein production efficiency, we controlled the expression of VLF-1 through various promoters and evaluated the target protein expression efficiency by the p10 promoter accordingly.
        11.
        2023.11 구독 인증기관·개인회원 무료
        Radioactive contamination distribution in nuclear facilities is typically measured and analyzed using radiation sensors. Since generally used detection sensors have relatively high efficiency, it is difficult to apply them to a high radiation field. Therefore, shielding/collimators and small size detectors are typically used. Nevertheless, problems of pulse accumulation and dead time still remain. This can cause measurement errors and distort the energy spectrum. In this study, this problem was confirmed through experiments, and signal pile-up and dead time correction studies were performed. A detection system combining a GAGG sensor and SiPM with a size of 10 mm × 10 mm × 10 mm was used, and GAGG radiation characteristics were evaluated for each radiation dose (0.001~57 mSv/h). As a result, efficiency increased as the dose increased, but the energy spectrum tended to shift to the left. At a radiation dose intensity of 400 Ci (14.8 TBq), a collimator was additionally installed, but efficiency decreased and the spectrum was distorted. It was analyzed that signal loss occurred when more than 1 million particles were incident on the detector. In this high-radioactivity area, quantitative analysis is likely to be difficult due to spectral distortion, and this needs to be supplemented through a correction algorithm. In recent research cases, the development of correction algorithms using MCNP and AI is being actively carried out around the world, and more than 98% of the signals have been corrected and the spectrum has been restored. Nevertheless, the artificial intelligence (AI) results were based on only 2-3 overlapping pulse data and did not consider the effect of noise, so they did not solve realistic problems. Additional research is needed. In the future, we plan to conduct signal correction research using ≈10×10 mm small size detectors (GAGG, CZT etc.). Also, the performance evaluation of the measurement/analysis system is intended to be performed in an environment similar to the high radiation field of an actual nuclear facility.
        12.
        2023.10 구독 인증기관·개인회원 무료
        뿌리응애류는 양파, 마늘, 생강, 백합 등의 뿌리를 가해한다. 최근 백합재배지에서는 질경이모자이크바이러 스(Plantago asiatica mosaic virus, PLAMV)에 의한 잎의 괴사 피해가 확산되고 있다. 태안 백합재배지에서 PlAMV 가 감염된 백합을 채집하여 구근을 조사한 결과, 식물체 당 뿌리응애 100개체 이상이 발견되었으며 Rhizoglyphus robini로 동정되었다. 이 종이 PlAMV의 보독여부를 확인하기 위해 채집된 R. robini에서 RNA를 추출하여 RT-PCR로 진단한 결과, 모든 개체에서 PlAMV가 확인되었다. 본 연구는 뿌리응애가 백합 구근 뿌리를 먹으면서 만든 상처를 통해 PlAMV가 전염될 수 있다는 가능성을 제시한다.
        13.
        2023.05 구독 인증기관·개인회원 무료
        Metals such as stainless steel and alloy 600 are used as structures and materials in nuclear power plants due to their excellent mechanical properties and heat resistance. And recently thermal and mechanical cutting technologies are being actively researched and developed for dismantling NPP. Among them, the mechanical cutting method has the advantage of less secondary waste generation such as fume and fine dust, but according to the wider the cutting range, the reaction force and the cutting device size are increased. In this paper, plasma assisted milling has been proposed to reduce the reaction force and device size, and the plasma efficiency was measured for SUS 316L. The plasma torch was operated at the level of 3 to 4 kW so that it was heated only without cutting. And the feedrate was set at 150 to 250 mm/min. The test confirmed that the plasma efficiency was 35% about SUS 316L, and it is expected that the numerical analysis using these test results can be used as basic data for plasma assisted milling.
        14.
        2023.05 구독 인증기관·개인회원 무료
        Various cutting technologies such as thermal and mechanical are being researched and developed to dismantle shutdown nuclear power plants. Each technology has the following advantages and disadvantages. The thermal cutting method has low reaction force and fast cutting speed, but secondary waste such as fume, dross, and fine dust is generated. The mechanical cutting method has the advantage of low generation of secondary waste such as fume, dross, and fine dust, but has the disadvantage of increasing the size of the device due to its large reaction force. In this study, the performance of plasma milling robot cutting technology for nuclear power plant materials was evaluated. First, before applying plasma auxiliary milling to the robot, tests were conducted on SUS 316 L and Alloy 600 to secure processing conditions such as plasma torch output and transfer speed. The test have shown that the mechanical strength was decreased of each material at the output power of the plasma torch of 4.4 and 8.4 kW, the transfer speed of 200 and 100 mm/min. Based on the test results, a plasma milling was attached to the robot and tested, and it was confirmed that even a small robot with a load of 140 kg can cut without any major problems.
        15.
        2023.05 구독 인증기관·개인회원 무료
        In this work, we report test results for direct melting of non-combustible wastes by using a 100 kW class transferred type plasma torch. For this purpose, non-combustible wastes consisting of metals and sands were prepared, weighed and melted by a transferred arc in a ceramic crucible with inner diameter of 150 mm. Test results reveal that 75wt% M6 iron bolts mixed with 25wt% sands were completely melted down within 140 seconds at the plasma power level of 83.8 kW, producing melting speed of 100 kg/hr and volume reduction rate of 62.8%. In addition, for simulated wastes consisting of 77.3wt% metal chips and 22.7wt% sands, the volume reduction rate high than 88% was achieved at 50 kW plasma power. These results indicate that non-combustible wastes can be treated efficiently when directly melting them by using transferred type plasma torch.
        16.
        2023.05 구독 인증기관·개인회원 무료
        Depending on the type of waste, DC plasma torch uses a transfer type operation for conductive waste and a non-transfer type operation for non-conductive waste. The transfer mode plasma torch can secure high throughput because the arc directly contacts the object and has high thermal efficiency. However, since the non-transfer mode does not have a higher thermal efficiency than the transfer mode, higher output is required to secure high throughput. A method of increasing the output of the plasma torch is increasing the current or extending the length of the plasma arc. However, the method of increasing the current affects the life of the electrode, and there is a limit to extending the arc length in the positive polarity plasma torch. Therefore, it is effective to design the plasma torch with reverse polarity to secure life and extend the arc length. In the reverse polarity plasma torch, the front electrode serves as the cathode, and the cathode point is not easy to control compared to the anode point, which may cause abnormal arcing and damage the plasma torch. This paper was conducted to investigate the conditions for securing the safety of these non-transferable reverse polarity plasma torch. The plasma torch is designed to have an output of 100 kW or less and to use the detachable nozzle to control the cathode point. The test showed that the shape of the nozzle prevented the cathode point moving outside of plasma torch and the excessive extension of the arc. Thanks to this, it was confirmed that plasma could be stably formed and abnormal arcing could also be prevented.
        17.
        2023.05 구독 인증기관·개인회원 무료
        It is important that the plasma torch used in the waste treatment field has a high output to increase throughput. In order to increase the output of the plasma torch, there is a method of increasing the current or extending the length of the plasma arc. Among these methods, high power can be easily achieved simply by increasing current, but it is difficult to ensure electrode life. Therefore, it is necessary to check the appropriate current and arc length conditions to achieve high power and stable operation. In this paper, the power performance according to the arc length, current, and operation mode was confirmed in the transfer mode plasma torch. The test conditions are the distance (arc length) between the plasma torch and the external electrode was set to 5-180 mm, and the current was set to be in the range of 90-460 A. As a result of the test, it was confirmed that the reverse polarity operation had a maximum output of 159 kW depending on the arc length and current, and the positive polarity operation had a maximum output of 138 kW. Through this result, it was confirmed that the arc length had an effect on increasing the output, and that the reverse polarity operation had a longer arc than the positive polarity operation.
        20.
        2022.10 구독 인증기관·개인회원 무료
        The safe, efficient and cost-effective decommissioning and dismantling of radioactive facilities requires the accurate characterization of the radionuclide activities and dose rate environment. And it is critical across many nuclear industries to identify and locate sources of radiation accurately and quickly. One of the more challenging aspects of dealing with radiation is that you cannot see it directly, which can result in potential exposure when working in those environments. Generally, semiconductor detectors have better energy resolution than scintillation detectors, but the maximum achievable count rates are limited by long pulse signals. Whereas some high pure germanium detectors have been developed to operate at high count rates, and these HPGe detectors could obtain gamma-ray spectra at high count rates exceeding 1 Mcps. However, HPGe detectors require cooling devices to reduce the leak currents, which becomes disadvantageous when developing portable radiation detectors. Furthermore, chemicalcompound semiconductor detectors made of cadmium telluride and cadmium zinc telluride are popular, because they have good energy resolution and are available at room temperature. However, CdTe and CZT detectors develop irradiation-induced defects under intense gamma-ray fields. In this Review, we start with the fundamentals of gamma rays detection and review the recent developments in scintillators gamma-ray detectors. The key factors affecting the detector performance are summarized. We also give an outlook on the field, with emphasis on the challenges to be overcome.
        1 2 3 4