검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 69

        8.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mesocrystals are macroscopic structures formed by the assembly of nanoparticles that possess distinct surface structures and collective properties when compared to traditional crystalline materials. Various growth mechanisms and their unique features have promise as material design tools for diverse potential applications. This paper presents a straightforward method for metal–organic coordination-based mesocrystals using nickel ions and terephthalic acid. The coordinative compound between Ni2+ and terephthalic acid drives the particle-mediated growth mechanism, resulting in the mesocrystal formation through a mesoscale assembly. Subsequent carbonization converts mesocrystals to multidirectional interconnected graphite nanospheres along the macroscopic framework while preserving the original structure of the Ni-terephthalic acid mesocrystal. Comprehensive investigations demonstrate that multi-oriented edge sites and high crystallinity with larger interlayer spacing facilitate lithium ion transport and continuous intercalation. The resulting graphitic superparticle electrodes show superior rate capability (128.6 mAh g− 1 at 5 A g− 1) and stable cycle stability (0.052% of capacity decay per cycle), certifying it as an advanced anode material for lithium-ion batteries.
        4,000원
        9.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Efforts have been extensively undertaken to tackle overheating problems in advanced electronic devices characterized by high performance and integration levels. Thermal interface materials (TIMs) play a crucial role in connecting heat sources to heat sinks, facilitating efficient heat dissipation and thermal management. On the other hand, increasing the content of TIMs for high thermal conductivity often poses challenges such as poor dispersion and undesired heat flow pathways. This study aims to enhance the through-plane heat dissipation via the magnetic alignment of a hybrid filler system consisting of exfoliated graphite (EG) and boron nitride (BN). The EG acts as a distributed scaffold in the polymer matrix, while the BN component of the hybrid offers high thermal conductivity. Moreover, the magnetic alignment technique promotes unidirectional heat transfer pathways. The hybrid exhibited an impressive thermal conductivity of 1.44 W m− 1 K− 1 at filler contents of 30 wt. %, offering improved thermal management for advanced electronic devices.
        4,000원
        11.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study prepares highly porous carbon (c-fPI) for lithium-ion battery anode that starts from the synthesis of fluorinated polyimide (fPI) via a step polymerization, followed by carbonization. During the carbonization of fPI, the decomposition of fPI releases gases which are particularly from fluorine-containing moiety (–CF3) of fPI, creating well-defined microporous structure with small graphitic regions and a high specific surface area of 934.35 m2 g− 1. In particular, the graphitic region of c-fPI enables lithiation–delithiation processes and the high surface area can accommodate charges at electrolyte/electrode interface during charge–discharge, both of which contribute electrochemical performances. As a result, c-fPI shows high specific capacity of 248 mAh g− 1 at 25 mA g− 1, good rate-retention performance, and considerable cycle stability for at least 300 charge–discharge cycles. The concept of using a polymeric precursor (fPI), capable of forming considerable pores during carbonization is suitable for the use in various applications, particularly in energy storage systems, advancing materials science and energy technologies.
        4,000원
        12.
        2024.04 구독 인증기관·개인회원 무료
        The baculovirus expression system (BES) utilize the p10 or polyhedrin promoter, a very late promoter that exhibits strong transcriptional activity primarily at the end of viral infection, to produce useful recombinant proteins. The burst sequence of the very late promoter is essential for strong transcription, and VLF-1 is a transcription factor that binds specifically to the burst sequence, and it has been reported that it can regulate the amount and timing of expression of protein by the very late promoter. Recently, a VLF-1 constitutively expressing cell line was constructed to increase the production of the target protein, but the effect was minimal. In this study, to find the optimal VLF-1 expression conditions to increase target protein production efficiency, we controlled the expression of VLF-1 through various promoters and evaluated the target protein expression efficiency by the p10 promoter accordingly.
        13.
        2023.10 구독 인증기관·개인회원 무료
        뿌리응애류는 양파, 마늘, 생강, 백합 등의 뿌리를 가해한다. 최근 백합재배지에서는 질경이모자이크바이러 스(Plantago asiatica mosaic virus, PLAMV)에 의한 잎의 괴사 피해가 확산되고 있다. 태안 백합재배지에서 PlAMV 가 감염된 백합을 채집하여 구근을 조사한 결과, 식물체 당 뿌리응애 100개체 이상이 발견되었으며 Rhizoglyphus robini로 동정되었다. 이 종이 PlAMV의 보독여부를 확인하기 위해 채집된 R. robini에서 RNA를 추출하여 RT-PCR로 진단한 결과, 모든 개체에서 PlAMV가 확인되었다. 본 연구는 뿌리응애가 백합 구근 뿌리를 먹으면서 만든 상처를 통해 PlAMV가 전염될 수 있다는 가능성을 제시한다.
        1 2 3 4