검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 376

        2.
        2025.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Capacitive deionization (CDI) represents a novel technology for the desalination and purification of seawater. Selecting the appropriate electrode material is crucial, with carbon electrodes frequently employed owing to their high specific surface area, extensive porous structure, and environmentally sustainable nature. This study presents a nitrogen-doped porous carbon, derived from household waste, which demonstrates outstanding electrochemical and desalination performance. The purified chitosan was mixed with a specific ratio of CaCO3 and carbonized at 800 °C to produce chitosan porous carbon (CPC-T). To verify the role of the templating agent, its performance was compared with chitosan porous carbon (CPC) prepared by direct carbonization. CPC-T possesses more mesoporous structures (31.25%), shortening ion transport pathways and significantly enhancing charge transfer rates. The nitrogen-rich doping (8.65 at%) provides numerous active sites and excellent conductivity, making it highly appropriate for capacitive deionization applications. Compared to CPC prepared without a templating agent, CPC-T has a higher specific capacitance (101.5 F g− 1 at a scan rate of 2 mV s− 1) and good cycling stability. The CDI cell made from it exhibits a salt adsorption capacity (SAC) of 25.8 mg g− 1 for 500 mg L− 1 NaCl solution at an applied voltage of 1.4 V, retaining 88% capacity after 50 adsorption–desorption cycles, demonstrating excellent desalination regeneration performance. Additionally, among different concentrations of salt solutions, the CPC-T material shows the best desalination performance for the test solution at a concentration of 500 mg L− 1. For different solute ions, the CDI cell with this material as the electrode exhibits excellent desalination performance for Ca2+, with a SAC value of up to 34.02 mg g− 1. This is a self-doped porous carbon material that significantly outperforms traditional carbon-based materials.
        4,600원
        15.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study details the synthesis and characterization of phosphorus-sulfur co-doped graphitic carbon nitride quantum dots (PSQ) and their integration into g-C3N4 (CN) to form PSQ/CN composites for the enhanced photocatalytic reduction of Cr(VI) and fluorescence detection. Incorporating PSQ into CN was found to significantly improve light absorption, narrow the band gap, and enhance charge separation efficiency. Notably, the composite material exhibits superior photocatalytic performance, especially in acidic environments. Photocatalytic assessments utilizing Cr(VI) demonstrated that the PSQ/ CN composite outperformed both undoped and singly doped materials, indicating its superior photocatalytic activity. Additionally, phosphorus-sulfur co-doping markedly increased the fluorescence quantum yield of PSQ. The fluorescence intensity exhibited a linear decrease with increasing Cr(VI) concentrations, enabling sensitive and selective detection of Cr(VI) with a detection limit as low as 1.69 μmol/L. Collectively, the PSQ/CN composite and PSQ highlight their potential for photocatalysis and fluorescence-based detection of Cr(VI), providing high sensitivity, selectivity, and synergistic interactions within the composite material.
        4,800원
        16.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we developed electrochemical sensors based on the composite of hydroxylated multiwalled carbon nanotubes (MWCNT-OH) and graphene for paraoxon-ethyl detection as pesticide residues in agricultural products. Chemical treatment was employed to produce MWCNT-OH from pristine MWCNT and its composite with graphene was subsequently characterized using FTIR, Raman spectroscopy, FESEM-EDX, TEM, and XPS techniques. The MWCNT-OH/graphene composite was employed as an electrode modifier on the glassy carbon electrode (GCE) surface, and its electroanalytical performances were studied using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. It was revealed the optimum composition ratio between MWCNT-OH and graphene was 2:8, for paraoxon-ethyl detection at pH 7. This could be attributed to the enhanced electrocatalytic activity in the MWCNT-OH/graphene composite which displayed a linear range of paraoxon-ethyl concentration as 0.1–100 μM with a lower detection limit of 10 nM and a good sensitivity of 1.60 μA μM cm− 2. In addition, the proposed sensor shows good reproducibility, stability, and selectivity in the presence of 10 different interfering compounds including other pesticides. Ultimately, this proposed sensor was tested to determine the paraoxon-ethyl concentrations in green apples and cabbage as samples of agricultural products. The obtained concentrations of paraoxon-ethyl from this proposed sensor show no significant difference with standard spectrophotometric techniques suggesting this sensing platform might be further developed as a rapid detection of pesticide residue in agricultural products.
        5,500원
        17.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, we reported a method for a fabrication of bead-on-string structured g-C3N4/CoFe2O4 composite nanofibers by electrospinning coupled with in situ calcination. For the first time, this catalyst effectively removed high concentrations of mixed organic pollutants through the synergistic effects of adsorption and photocatalysis. The composite materials removal efficiency of adsorption and photocatalytic for high concentrations of organic pollutants in wastewater can exceed 90%. Surface potential analysis using in situ Kelvin probe force microscopy demonstrated the electron transfer pathways on the catalyst surface. The formation of the heterojunction was demonstrated through DFT calculations to significantly enhance the efficiency of electron–hole separation. This work provided valuable insights for the development of efficient catalysts for the synergistic adsorption-photocatalytic treatment of environmental pollutants, thus addressing increasingly severe environmental challenges.
        5,100원
        18.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As a key component of composite materials, the interface quality is crucial for determining the mechanical properties of composites. Carbon fiber sizing treatment significantly enhances the fiber-matrix interface, a process extensively utilized in the carbon fiber industry. This study synthesized an environmentally friendly waterborne polyurethane sizing agent and investigated the impact of molecular weight, a critical factor, on composite performance by varying the soft segment type in the polyurethane. This research provides insights into cost-effective and eco-friendly surface treatment methods for carbon fibers and the design of robust interface structures.
        4,000원
        19.
        2025.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper explores the illegal Israeli occupation of Palestinian territories, focusing on the West Bank and Gaza after 1967. It employs a qualitative research approach, analyzing primary and secondary sources to examine the legal ramifications of Israel’s ongoing occupation and settlement expansion, which violate international law. The findings highlight that, despite various international resolutions, Israel continues its unlawful presence. Key legal rulings, such as the International Court of Justice’s decision of July 19, 2024 and a UN General Assembly resolution in September 2024, reaffirm the illegality of Israel’s actions. Nonetheless, Israel has ignored these calls for withdrawal and persists in expanding settlements. The paper argues that the UN member states must enforce international legal rulings and hold Israel accountable through international courts. It advocates for the imposition of economic and diplomatic sanctions by the UN Security Council to curb settlement expansion and dismantle existing illegal settlements, emphasizing the need for coordinated international efforts to achieve justice for Palestine.
        5,400원
        1 2 3 4 5