Tetrafluoromethane(CF4) have been widely used as etching and chemical vapor deposition gases for semiconductor manufacturing processes. CF4 decomposition efficiency using microwave system was carried out as a function of the microwave power, the reaction temperature, and the quantity of Al2O3 addition. High reaction temperature and addition of Al2O3 increased the CF4 removal efficiencies and the CO2/CF4 ratio. When the SA30 (SiC+30wt%Al2O3) and SA50 (SiC+50wt%Al2O3) were used, complete CF4 removal was achieved at 1000℃. The CF4 was reacted with Al2O3 and by-products such as CO2 and AlF3 were produced. Significant amount of by-product such as AlF3 was identified by X-ray powder diffraction analysis. It also showed that the γ-Al2O3 was transformed to α-Al2O3 after microwave thermal reaction.
Alumina-supported catalysts containing different transition metals such as Cu, Cr, Mn, Zn, Co, W were investigated for their activity in the selective oxidation of toluene. Catalytic oxidation of toluene was investigated at atmospheric pressure in a fixed bed flow reactor system over transition metals with Al2O3 catalyst. The result showed the order of catalytic activities for the complete oxidation of toluene was Mn > Cu> Cr> Co> W> Zn for 5wt.% transition metals/Al2O3. Mn/Al2O3 catalysts containing different amount of Mn were characterized by X-ray diffraction spectroscopy for decision of loading amount of metal to alumina. 5 wt.%Mn/Al2O3 catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289℃.
Adsorption experiment of carbon dioxide was performed on MCM41 silica with a 30 wt .% EDA(ethylenediamine) loading at different CO2 inlet concentration and various adsorption temperature. The surface characteristics of CO2 capturing agent were carried out using BET analysis, X-ray diffraction and FT-IR. The results of BET showed 781 m2/g for MCM41 and 464 m2/g for EDA/MCM41. X-ray diffraction results reveled typical hexagonal pore system. The higher sorption capacity of EDA/MCM41 was about 80 mgco2/gsorbent with 50% CO2 inlet concentration and 303 K adsorption temperature. The isosteric heat of adsorption in 303-353 K ranged from -25.47 to -28.24 KJ/mole for EDA/MCM41, which indicates CO2-EDA/MCM41 interaction with exothermic adsorption process. Finally, the performance of EDA/MCM41 in 10 consecutive sorption-desorption runs was a stable with only a minor drop in its sorption capacity.
In this study, adsorption of polychlorinated biphenyls(PCBs) in transformer oil on powder activated carbon (PAC) and synthetic zeolite was evaluated. Adsorption characteristics of PCBs on the PAC and zeolite has been investigated in a batch system with respect to adsorbents amount and contact time. BET results showed 908 m2/g for PAC and 483 m2/g for zeolite. The adsorption capacity of PCBs increased with an increasing input amount of absorbent. The adsorption experimental results showed that PAC removed 90% of input PCBs in transformer oil while zeolite removed only 64%. Adsorption of PCBs to PAC and zeolite fit the Freundlich model well. The Freundlich parameter, Kf, for PAC and zeolite was 193.1 and 43.0 respectively, indicating that PAC is effect adsorbent for PCBs adsorption in transformer oil.
Toluene desorption of modified activated carbon for microwave irradiation was evaluated. As a virgin GAC reacted from microwave energy, it created an "arcing" between GAC particles in desorption process. The arcing became more and more vigorous and achieved a red flame of GAC. The silica coated GAC(Si/GAC) was developed to prevent arcing phenomenon and temperature control problem. The result shows virgin GAC with 5wt%, 10wt% and 20wt% silica had no arcing and could control temperature very well. However, the adsorption rate of Si/GAC was decreased by coated silica amount due to decreasing surface area of GAC. The 5wt% Si/GAC adsorption rate was quite similar to virgin GAC adsorption rate. After adsorption, the toluene-loaded GAC and Si/GAC was reactivated by 2450MHz MW irradiation with 300W for 5 min. Quantitative desorption of the toluene was achieved at MW irradiation at 300W with desorption efficiencies as high as 98.59% to 84.65%% after four cycles.
Air quality monitoring networks are very important facilities to manage urban air pollution control and to set up an environmental policy. Since air quality monitoring network of Daegu was allocated from 1980s to mid-90s, there is need to reevaluate it and relocated its site. This study was evaluated the position of Daegu air quality monitoring station by unit environmental sensitivity index, grid emission rate, CAI (Comprehensive Air-quality Index) point. The investigation domain covered an area of 16 × 24 km centered at the metropolitan area of Daegu with grid spacing of 2 km. The location of alternative air quality monitoring networks was selected through optimization and quintiles analysis of total score. The result showed that all things considered, new air quality monitoring network need to install grid numbers 10, 28, 36, 37, 46. We also recommand three scenarios of alternative air quality monitoring network when considering unit environmental sensitivity index, emission rate and CAI point.
In this study, the characteristics of granular activated carbon (GAC) supported metal was investigated in an area influenced by flame discharge and temperature variation during irradiating microwave. The modified GAC was formulated by impregnating metal hydroxides of nickel (Ni/GAC), barium (Ba/GAC), copper (Cu/GAC), zinc (Zn/GAC), cobalt (Co/GAC) and lanthanum (La/GAC). Ba/GAC was selected as it showed lack of spark discharge and temperature increasing aspects. Comparison of adsorption and desorption amount of GAC and Ba/GAC showed that adsorption and desorption rate of the GAC were higher than those of Ba/GAC. The results show that the presence of barium can decrease adsorption/desorption rate because of plugging pore of GAC. Toluene regeneration rate of Ba/GAC was better than that of GAC due to barium loading. Finally, GAC with barium can be controled a rapid increasing temperature and spark discharge, increased the regeneration rate of toluene during desorption by irradiating microwave.
This paper describes the adsorption/desorpton efficiency of a modified activated carbon by irradiated microwave to treat toluene. By employing microwave energy, the regeneration time was considerably shortened compared with conventional thermal heating regeneration. New adsorbent called ACB(Activated Carbon-Bentonite) was prepared from powder activated carbon with mixing bentonite as a binder. Specific surface area, average pore size and total pore volume of ACB were calculated from the nitrogen adsorption/desorption isotherm. The surface of ACB was characterized with scanning electron microscope(SEM). The results showed that the specific surface area, total pore volume, average pore size of ABC was not influenced by regenerating cycle with microwave irradiation. Toluene was adsorbed onto ACB which desorbed by MW irradiation. Absorption capacity of ACB was 0.117 gtoluene/ gACB. Desorption efficiency of toluene increased as higher microwave output was applied.
Catalytic combustion of toluene was investigated on CuOx/SnO2-ZrO2, CuOx/SnO2, CuOx/ZrO2 catalysts prepared by impregnation. Characteristics of catalysts loaded on binary support and single support were observed by TPR, TPO, XRD, XPS techniques. The results on catalytic combustion showed that binary supports improve the activity of copper in the combustion of toluene. The reason for high catalytic activity on toluene combustion of CuOx/SnO2-ZrO2 catalyst was ascribed to oxidation·reduction activity at low temperatures and stability of oxidation state after reduction.
In recent days, photochemical smog due to the rapid industry development and vehicle increasement has become a critical pollutant in the metropolitan area and the number of ozone alarm signal has increased every year. This research was performed to evaluate VOCs emission source characteristics and concentration of VOCs in Daegu. The site average concentration was observed in the following order : industrial area > commercial area > residential area. Most of the VOCs species except toluene showed variations with higher concentration during nighttime, and lower concentration during the daytime. The major VOCs of stationary emission source were BTEX(benzene, toluene, ethylbenzene, xylene) and methylene chloride, trichloroethene and styrene. Also, those of automobile exhaust were toluene and benzene. Also, the major VOCs concentration emited by the vehicle fuel was observed in the following order : gasoline > light oil > liquefied petroleum gas (L.P.G). Correlation coefficients values were estimated between major VOCs such as toluene, ethylbenzene, m,p-xylene, o-xylene. Results showed that correlation coefficient values were significant magnitude above 0.76. Also, there showed highly significant correlations among ethylbenzene, m,p-xylene, and o-xylene concentration(Pearson correlation coefficients, r= 0.868~0.982). Calculated correlation coefficients among commercial area, industrial area and residential area were 0.934~0.981, they showed high correlation. There showed highly correlation between stationary emission source and industrial area, compared with commercial area and residential area. Also, calculated correlation coefficients among commercial area, industrial area, residential area and automobile exhaust were 0.732, 0.725, 0.777, respectively.
Activity of manganese oxide supported on γ-Al2O3 was increased when cerium was added. Also, cerium-added manganese oxide on γ-Al2O3 was more effective in oxidation of toluene than that without cerium. XRD result, it was observed that MnO2+CeO2 crystalline phases were present in the samples. For the used catalyst, a prominent feature has increased by XPS. TPR/TPO profiles of cerium-added manganese oxide on γ-Al2O3 changed significantly increased at a lower temperature. The activity of 18.2 wt% Mn+10.0 wt% Ce/γ-Al2O3 increased at a lower temperature. The cerium added on the manganese catalysts has effects on the oxidation of toluene.
The research in this paper was carried out to examine the BTEX(Benzene, Toluene, Ethylbenzene, Xylene) concentrations in Seongseo Industrial Complex. These compounds are the major constituents, more than 60% in composition of total VOCs, mainly charging in ambient air. BTEX samples were collected from the 38 sites, 10 for the source points and 18 for the boundary sites, and were analyzed by canister-GC/MS. The mean concentrations of BTEX were 33 ppbv for benzene, 214 ppbv for toluene, 89 ppbv for ethylbenzene, 77 ppbv for xylene. Among the BTEX, toluene had the highest concentration in the source points and boundary sites. In the source points, BTEX concentration of incineration facility for hazardous wastewater appeared highly in the range of 220~350 ppbv. BTEX concentrations in source boundary sites appeared in the order of toluene>ethylbenzene>xylene>benzene. As a result of the correlation analysis, the concentration of the source points was related to those of the boundary sites. Correlation of ethylbenzene and xylene was presented to 0.7991(P<0.01), 0.6329(P<0.05) as the correlation coefficient, respectively.
As a typical example of simultaneous analysis of the odorous compounds, the volatile organic compounds from inventory sources in Seongseo industrial area were concentrated and analyzed with thermal desorber/GC/ MSD, and major malodorous compounds were estimated. Odor intensity and odor concentration was analyzed simultaneously During a period from November in 2002 to December in 2003, this study was conducted to evaluate malodor emission characterization in major treatment facilities. The major components were Dimethyl sulfide, Dimethyl disulfide, Methyl mercaptane, Ammonia, Benzene, Toluene, m,p-xylene, o-xylene, Styrene, 1,2,4- T.M.B and 1,3,5-T.M.B. Among the six major inventory sources, the odor unit concentration of Night-soil disposal facilities was the highest, 669~2344 ou/m3.
V2O5/TiO2 catalysts promoted with Mn were prepared and tested for selective catalytic reduction of NOx in NH3. The effects of promoter content, degree of catalyst loading were investigated for NOx activity while changing temperatures, mole ratio, space velocity and O2 concentration. Among the various V2O5 catalysts having different metal loadings, V2O5(1 wt.%) catalyst showed the highest activity(98%) under wide temperature range of 200-250℃. When the V2O5 catalyst was further modified with 5 wt.% Mn as a promoter, the highest activity(90-47%) was obtained over the low temperature windows of 100-200℃. From Mn-V2O5/TiO2, it was found that by addition of 5 wt.% Mn on V2O5/TiO2 catalyst, reduction activity of catalyst was improved, which resulted in the increase of catalytic activity and NOx reduction. According to the results, NOx removal decreased for 10%, but the reaction temperature down to 100℃.
Under controlled conditions in an environmental chamber, 24 experiments were performed to compare the ability of a Variable-Air-Volume/Bypass Filtration System(VAV/BPFS) to remove indoor pollutants and to conserve energy with the ability of conventional Variable Air Volume(VAV) system. The specific conclusions of this paper were; first, the VAV/BPFS was more efficient than the VAV system in removing particulate matter, TVOC, and target VOCs. The total effective removal rate of PM for the VAV/BPFS was two times as high as that of the VAV system. The total effective removal rate of TVOC for the VAV/BPFS was 20 percent higher than that of the VAV system. Also each target VOC concentration was reduced by using the VAV/BPFS. Second, clean air delivery rate was increased by using VAV/BPFS due to additional filtration rate. Otherwise, the VAV/BPFS decreased outdoor supply air rate above 25 percent relative to the rate of VAV system. Third, total energy consumption by the VAV/BPFS was lower than that of the VAV system during the period with indoor thermal load, occupied time. The energy saving of the VAV/BPFS ranged from 11 to 16 percent. The VAV/BPFS improves indoor air quality more efficiently than the VAV system, and it reduced energy consumption. Retrofitting the VAV system with the VAV/BPFS was easy. The use of VAV/BPFS is, therefore, recommended for buildings with VAV system as well as for buildings at designing stage.
We studied the relationship between a civil affair occurrence of bad smell and meteorological conditions around Seongseo district for recent 2 years. The results were as follows;
(1) The civil affair occurrence days of bad smell were concentrated from May to August.
(2) Daily mean temperatures were mostly 20~28℃ and daily mean relative humidities were 60~80%.
(3) Wind speeds were mostly less than 2m/s(75%), and wind directions were southerly winds(50%). It was hardly occurred for relatively well-ventilated conditions in cases of wind speeds 2m/s over.
And the Lagrangian particle dispersion model were used to figure out the transport route in a civil affair occurrence days of bad smell. It was found that the south-western winds transported the bad smelling materials from Jungni-dong(the place of source) to the housing complex located along a piedmont district.
The objective of this research was to test whether, under controlled laboratory conditions, hybrid SNCR/SCR process improves NOx removal efficiency in comparison with the SNCR only. The hybrid process is a combination of a redesigned existing SNCR with a new downstream SCR. NOx reduction experiments using a hybrid SNCR/SCR process have been conducted in simple NO/NH3/O2 gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial NOx concentration was 500 ppm in the presence of 5% or 15% O2. Commercial catalysts, V2O5-WO3-SO4/TiO2, were used for SCR NOx reduction. The residence time and space velocity were around 1.67 seconds and 2,400 h-1 or 6000 h-1 in SNCR and SCR reactors, respectively.
NOx reduction of the hybrid system was always higher than could be achieved by SNCR alone at a given value of NH3SLIP. Optimization of the hybrid system performance requires maximizing NOx removal in the SNCR process.
An analysis based on the hybrid system performance in this lab-scale work indicates that a equipment with NOxi=500 ppm will achieve a total NOx removal of about 90 percent with NH3SLIP ≤ 5 ppm only if the SNCR NOx reduction is at least 60 percent. A hybrid SNCR/SCR process has shown about 26~37% more NOx reduction than a SNCR unit process in which a lower temperature of 850℃ turned out to be more effective.
This paper have examined the optimum combination of SNCR and SCR by varying SNCR injection temperature and NSR ratio along with SCR space velocity. NOx reduction experiments using a SNCR/SCR combined process have been conducted in simple NO/NH3/O2 gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial NOx concentration was 500 ppm in the presence of 5% O2. Commercial catalyst, sulfated V2O5-WO3/TiO2, was used for SCR NOx reduction. The residence time and space velocity were around 1.67 sec, 2,400 h-1 and 6,000 h-1 in the SNCR and SCR reactors, respectively.
SNCR NOx reduction effectively occurred in a temperature window of 900~950℃. About 88% NOx reduction was achieved with an optimum temperature of 950℃ and NSR=1.5. SCR NOx reduction using commercial V2O5-WO3-SO4/TiO2 catalyst occurred in a temperature window of 200~450℃. 80~98% NOx reduction was possible with SV=2400 h-1 and a molar ratio of 1.0~2.0.
A SNCR/SCR(SV=6000 h-1) combined process has shown same NOx reduction compared with a stand-alone SCR(SV=2400 h-1) unit process of 98% NOx reduction. The NH3-based chemical could routinely achieve SNCR/SCR combined process total NOx reductions of 98% with less than 5 ppm NH3 slip at NSR ranging from about 1.5 to 2.0, SNCR temperature of 900℃~950℃, and SCR space velocity of 6000 h-1. Particularly, more than 98% NOx reduction was possible using the combined process under the conditions of TSNCR=950℃, TSCR=350℃, 5% O2, SV=6000 h-1 and NH3/NOx=1.5. A catalyst volume was about three times reduced by SNCR/SCR combined process compared with SCR process under the same controlled conditions.