The directed energy deposited (DED) alloys show higher hardness values than the welded alloys due to the finer microstructure following the high cooling rate. However, defects such as microcracks, pores, and the residual stress are remained within the DED alloy. These defects deteriorate the wear behavior so post-processing such as heat treatment and hot isostatic pressing (HIP) are applied to DED alloys to reduce the defects. HIP was chosen in this study because the high pressure and temperature uniformly reduced the defects. The HIP is processed at 1150°C under 100 MPa for 4 hours. After HIP, microcracks are disappeared and porosity is reduced by 86.9%. Carbides are spherodized due to the interdiffusion of Cr and C between the dendrite and interdendrite region. After HIP, the nanohardness (GPa) of carbides increased from 11.1 to 12, and the Co matrix decreased from 8.8 to 7.9. Vickers hardness (HV) decreased by 18.9 % after HIP. The dislocation density (10-2/m2) decreased from 7.34 to 0.34 and the residual stress (MPa) changed from tensile 79 to a compressive -246 by HIP. This study indicates that HIP is effective in reducing defects, and the HIP DED Stellite 6 exhibits a higher HV than welded Stellite 6.
Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400oC. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.
Safeguards systems and measures are determined through diversion scenario analysis based on the facility design information submitted to the IAEA when a new nuclear facility is introduced. While the concept of safeguards-by-design (SBD), which considers the safeguards from the design phase for a facility operator to minimize unplanned changes or disruption to facility operations as well as for the IAEA to increase the efficiency and effectiveness in safeguards implementation, has been emphasized for more than a decade, there is no practical tool or guidance on how to apply it. In this study, we develop a diversion path analysis tool and introduce how to apply SBD using it. A diversion path analysis tool was developed based on the elements that constitute diversion and the algorithm generated based on the initial information of facility and nuclear material flow. The results of utilizing the analysis tool depending on a different level of facility information and the safeguards set-ups were compared through examples. Taking a typical light water reactor as an example, the test analyzed the automatic generation of dedicated routes, configuration of safeguards measures, and diversion path analysis. Through this, the application and limitations of the analysis tool are discussed, and ideas for utilization according to the SBD concept and necessary regulatory guidance are proposed. The results of this study are expected to be directly utilized to domestic nuclear control during the regulation process for a construction of new nuclear power systems, and furthermore, to enhance national credibility in the engagement with the IAEA for implementation of safeguards.
증산은 적정 관수 관리에 중요한 역할을 하므로 수분 스트레스에 취약한 토마토와 같은 작물의 관개 수요에 대한 지식이 필요하다. 관수량을 결정하는 한 가지 방법은 증산량을 측정하는 것인데, 이는 환경이나 생육 수준의 영향을 받는다. 본 연구는 분단위 데이터를 통해 수학적 모델과 딥러닝 모델을 활용하여 토마토의 증발량을 추정하 고 적합한 모델을 찾는 것을 목표로 한다. 라이시미터 데이터는 1분 간격으로 배지무게 변화를 측정함으로써 증산 량을 직접 측정했다. 피어슨 상관관계는 관찰된 환경 변수가 작물 증산과 유의미한 상관관계가 있음을 보여주었다. 온실온도와 태양복사는 증산량과 양의 상관관계를 보인 반면, 상대습도는 음의 상관관계를 보였다. 다중 선형 회귀 (MLR), 다항 회귀 모델, 인공 신경망(ANN), Long short-term memory(LSTM), Gated Recurrent Unit(GRU) 모델을 구 축하고 정확도를 비교했다. 모든 모델은 테스트 데이터 세트에서 0.770-0.948 범위의 R2 값과 0.495mm/min- 1.038mm/min의 RMSE로 증산을 잠재적으로 추정하였다. 딥러닝 모델은 수학적 모델보다 성능이 뛰어났다. GRU 는 0.948의 R2 및 0.495mm/min의 RMSE로 테스트 데이터에서 최고의 성능을 보여주었다. LSTM과 ANN은 R2 값이 각각 0.946과 0.944, RMSE가 각각 0.504m/min과 0.511로 그 뒤를 이었다. GRU 모델은 단기 예측에서 우수한 성능 을 보였고 LSTM은 장기 예측에서 우수한 성능을 보였지만 대규모 데이터 셋을 사용한 추가 검증이 필요하다. FAO56 Penman-Monteith(PM) 방정식과 비교하여 PM은 MLR 및 다항식 모델 2차 및 3차보다 RMSE가 0.598mm/min으로 낮지만 분단위 증산의 변동성을 포착하는 데 있어 모든 모델 중에서 가장 성능이 낮다. 따라서 본 연구 결과는 온실 내 토마토 증산을 단기적으로 추정하기 위해 GRU 및 LSTM 모델을 권장한다.
본 연구는 주변 환경의 차이에 따른 화분매개곤충의 유입 특성을 파악하기 위하여 국립수목원 내 진화속을걷 는정원과 부추속전문전시원에 식재된 울릉산마늘의 화분매개곤충을 조사하였다. 2023년 5월 22일부터 6월 2일 까지 꽃이 70% 이상 개화하였을 때 포충망을 활용하여 8일간 곤충을 채집하였고, 각 전시원 별 식생(피도), 기후 (온도·습도·조도)를 조사하였다. 조사 결과 진화속을걷는정원에서 피도 60% 온도 26.4℃, 습도 31.5%, 조도 40953.6lx, 화분매개곤충 20과 450개체, 부추속전문전시원은 피도 90%, 온도 25.6℃, 습도 31.6%, 조도 6387lx, 화분매개곤충 15과 196개체로 나타났다. 온도와 조도가 상대적으로 높은 진화속을걷는정원이 채집된 곤충의 다양성과 방문 빈도가 높았다. 시간대별 곤충의 방문 빈도를 비교해본 결과 온도와 조도는 개체수가 증가할 때 같이 증가하는 경향을 보였으며, 습도는 반대의 경향을 보였다.
This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520oC. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515oC following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.
To evaluate the safeguards system or performance in a facility, it is crucial to analyze the diversion path for nuclear materials. However, diversion paths can range from the extremely simplified to the complicated depending on the level of knowledge and the specific person conducting the analysis. This study developed the diversion path analysis tools using an event tree and fault tree method to generating diversion paths systematically. The essential components of the diversion path were reviewed, and a logical flow was developed for systematically creating the diversion path. An algorithm was created based on the facility design components and logical flow, as well as the initial information of the nuclear materials and material flows. The event tree and fault tree analysis tools were used to test the path generation algorithm. The usage and limitations of these two logic methods are discussed, and ideas to incorporate the logic algorithm into practical program tools are suggested. The tests were analyzed on a typical light water reactor as an example, including automatic generation of dedicated pathways, configuration of safeguards measures, and analyzing paths with strategies for avoiding safeguard systems. The results led to the development of a draft pathway analyzer program that can be applied to general nuclear systems. The results of this study will be used to develop a program module that can systematically generate diversion paths using the event tree and fault tree method. It can help to guide and provide practical tools for implementing SBD.
Even though it is emphasized to apply safeguards-by-design (SBD) concept in the early phase of the design of a new nuclear facilities, there is no clear guideline or tools for the practical SBD implementation. Generally known approach is trying to review whether there is any conflicts or shortcomings on a conceptual safeguards components in a design information. This study tries to build a systematic tools which can be easily applied to safeguards analysis. In evaluating the safeguards system or performance in a facility, it is essential to analyze the diversion path for nuclear materials. Diversion paths, however, can be either extremely simplified or complicated depending on the level of knowledge and purpose of specific person who do analyze in the field. In the context, this study discusses the applicability of an event tree and fault tree method to generating diversion paths systematically. The essential components constituting the diversion path were reviewed and the logical flow for systematically creating the diversion path was developed. The path generation algorithm based on the facility design components and logical flow as well as the initial information of the nuclear materials and material flows was test using event tree and fault tree analysis tools. The usage and limitation of the applicability of this two logic methods are discussed and idea to incorporate the logic algorithm into the practical program tools is suggested.The results will be used to develop a program module which can systematically generate diversion paths using the event tree and fault tree method.
분화국화 ‘솔라에그(등록번호 8569)’는 2015년 경상남도농 업기술원 화훼연구소에서 분홍색 ‘포인트에그’를 감마선 처리 를 하여 육성하였다. 특성검정과 형질 안정성은 2017년에서 2018년까지 3회를 수행하였다. ‘솔라에그’는 분홍색 꽃잎(54D) 과 적자색 중심부(59B)를 가진 ‘아네모네’ 형태이다. 꽃과 잎 색깔과 모양에서는 ‘솔라에그’와 ‘포인트에그’ 간의 차이는 거 의 없었다. ‘솔라에그’의 식물체와 개화 연구에서 조명과 억제 재배를 했을 때 약 42일로 개화소요시간은 비슷했다. 그러나 초장, 꽃 크기, 꽃 중심부 크기와 착화수에서 ‘포인트에그’와 비교했을 때 차이가 있었다. 특히, 자연재배조건에서 꽃 크기 는 4cm으로 대조품종과 비교했을 때 컸다. 국화 품종에서는 꽃의 크기가 상업적으로 중요한 형질이다. ‘솔라에그’의 표현 형과 개화기 연구와 비교하여 배수성, RAPD, 세포 크기 및 수 분석을 하였다. 이들 결과에서는 표현형의 변화는 작은 유전 적 변이와 세포 분열 증가와 관련이 있을 것이라고 추정하고 있다. 중형 크기의 ‘솔라에그’는 분화국화로 이용되며 농가의 평균소득 증대를 기대할 수 있다.
본 연구는 원통형 종이포트 토마토 육묘시 Diniconazole의 처리방법이 도장억제 및 근권발달에 미치는 영향을 검토하기 위하여 수행되었다. 그 결과, 엽면적, LAR, 초장, 충실도, 생체중, RGR 및 R/S 에서 시험구간 유의한 차이를 보였다. 동일한 농도를 처리했을 경우, 근권부와 지상부의 흡수도 차이로 인해 저면관수가 엽면살포에 비해 도장억제에 효과적이었다. 저면관수는 엽면시비의 10분의 1의 농도만으로도, 20~30%정도의 동일한 도장억제 효과를 얻을 수 있었다. 디니코나졸 처리에의한 근권부 반응이 흥미로웠는데, 저면관수시 총근장, 근권부피, 평균 근경 및 근단수가 증가하였다. 특히, 0.3mm 이하의 초미세근이 감소하고 0.3~0.6mm의 세근이 증가하였다. 따라서 원통형 종이포트 육묘시 저면관수를 하는 것이 기존 엽면시비에 비해 사용량이 적으면서도 도장억제 및 근권부 활착률을 높힐 수 있을 것으로 판단된다.