This study aimed to grow single crystals with low dislocation density using a heat exchange method using room temperature water, and investigated the effect of the structure of the heat exchanger under the crucible on the defects and dislocation density of the single crystals and the shape of the solid-liquid interface of the crystals, and obtained the following conclusions. The dislocation density of sapphire single crystal grown at 2,200℃ for 30 min and a growth rate of 0.2℃/min was 0.92x103pcs/㎠. Mo guard was used to stabilize the solid-liquid interface grown from seeds, and sapphire single crystals with a diameter of 130㎜ and a height of 75㎜ were grown.
To improve light absorption ability in the visible light region and the efficiency of the charge transfer reaction, Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst were synthesized. The reduced TiO2 nanotube photocatalyst was fabricated by anodic oxidation of Ti plate, followed by an electrochemical reduction process using applied cathodic potential. For TiO2 photocatalyst electrochemically reduced using an applied voltage of -1.3 V for 10 min, 38% of Ti4+ ions on TiO2 surface were converted to Ti3+ ion. The formation of Ti3+ species leads to the decrease in the band gap energy, resulting in an increase in the light absorption ability in the visible range. To obtain better photocatalytic efficiency, Pd nanoparticles were decorated through photoreduction process on the surface of reduced TiO2 nanotube photocatalyst (r10-TNT). The Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst exhibited enhanced photocurrent response, and high efficiency and rate constant for aniline blue degradation; these were ascribed to the synergistic effect of the new electronic state of the TiO2 band gap energy induced by formation of Ti3+ species on TiO2, and by improvement of the charge transfer reaction.
For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.
A boron-doped diamond(BDD) electrode is attractive for many electrochemical applications due to its distinctive properties: an extremely wide potential window in aqueous and non-aqueous electrolytes, a very low and stable background current and a high resistance to surface fouling. An Ar gas mixture of H2, CH4 and trimethylboron (TMB, 0.1 % C3H9B in H2) is used in a hot filament chemical vapor deposition(HFCVD) reactor. The effect of argon addition on quality, structure and electrochemical property is investigated by scanning electron microscope(SEM), X-ray diffraction(XRD) and cyclic voltammetry(CV). In this study, BDD electrodes are manufactured using different Ar/CH4 ratios (Ar/CH4 = 0, 1, 2 and 4). The results of this study show that the diamond grain size decreases with increasing Ar/CH4 ratios. On the other hand, the samples with an Ar/CH4 ratio above 5 fail to produce a BDD electrode. In addition, the BDD electrodes manufactured by introducing different Ar/CH4 ratios result in the most inclined to (111) preferential growth when the Ar/CH4 ratio is 2. It is also noted that the electrochemical properties of the BDD electrode improve with the process of adding argon.
Infrared(IR) heating has many advantages, such as energy efficiency, reduced heating time, cleanliness, equipment compactness, high drying rate and easy automation. These features of IR heating provide widely industrial applications, such as surface heat treatment in semiconductor fabrication, thermoforming of polymers, drying and disinfection of food products, heating to metal forging, and drying of wet materials. In this study, the characteristics of a protected gold mirror were examined by spectrophotometer and the lifetime of the coating layers were evaluated by a cross-cutting method and salt spray test. The effects of manufacturing conditions on the protected gold mirror were seen and remedies for these effects were noted in order to improve the properties of the protected gold mirror in the drying process. The reflectance and lifetime of the protected gold mirror was influenced by manufacturing conditions, such as surface roughness and forming conditions of the anti-oxide layer, the adhesion layer, the reflecting layer and the protection layer. The results of this study showed that the protected gold mirror manufactured using a buffing method for pre-treatment resulted in the most effective reflectance. In addition, Al2O3 coating on an Al substrate as an anti-oxide layer was more effective than the anodizing process in the test of reflectance. Furthermore, the protected gold mirror manufactured by layers forming of various materials resulted in the most effective reflectance and lifetime when coated with Al2O3 as the anti-oxide layer, coated Cr as the adhesion layer, and coated MgF2 as the protection layer.
This study investigated the effects of the post annealing temperatures on the electrical and interfacial properties of a metal-semiconductor-metal photodetector(MSM-PD) device. The interdigitate type MSM-PD devices had the structure Al(500 nm) / Ti(200 nm) / poly-Si(500 nm). Structural analyses of the MSM-PD devices were performed by employing X-ray diffraction(XRD), scanning electron microscopy(SEM) and transmission electron microscope(TEM). Electrical characteristics of the MSM-PD were also examined using current-voltage(I-V) measurements. The optimal post annealing condition for the Schottky contact of MSM-PD devices are 350℃-30minutes. However, as the annealing temperature and time are increased, electrical characteristics of MSM-PD device are degraded. Especially, for the annealing conditions of 400℃-180minutes and 500℃-30minutes, the I-V measurement itself was impossible. These results are closely related to the solid phase reactions at the interface of MSM-PD device, which result in the formation of intermetallic compounds such as Al3Ti and Ti7Al5Si12.
Boron-doped diamond (BDD) electrode has an extremely wide potential window in aqueous and non-aqueous electrolytes, very low and stable background current and high resistance to surface fouling due to weak adsorption. These features endow the BDD electrode with potentially wide electrochemical applications, in such areas as wastewater treatment, electrosynthesis and electrochemical sensors. In this study, the characteristics of the BDD electrode were examined by scanning electron microscopy (SEM) and evaluated by accelerated life test. The effects of manufacturing conditions on the BDD electrode were determined and remedies for negative effects were noted in order to improve the electrode lifetime in wastewater treatment. The lifetime of the BDD electrode was influenced by manufacturing conditions, such as surface roughness, seeding method and rate of introduction of gases into the reaction chamber. The results of this study showed that BDD electrodes manufactured using sanding media of different sizes resulted in the most effective electrode lifetime when the particle size of alumina used was from 75~106 μm (#150). Ultrasonic treatment was found to be more effective than polishing treatment in the test of seeding processes. In addition to this, BDD electrodes manufactured by introducing gases at different rates resulted in the most effective electrode lifetime when the introduced gas had a composition of hydrogen gas 94.5 vol.% carbon source gas 1.6 vol.% and boron source gas 3.9 vol.%.
환경시료에서 마이크로시스틴 분해능을 나타낸 균주 1종을 분리하였고 16S rRNA gene sequence 분석 결과, Microbacterium sp.로 동정되어 Microbacterium sp. MA21로 명명하였다. R2A배지를 기본 배지로 하여 50 μg L-1 microcystin-LR을 첨가하여 30C, 12시간 동안 배양한 후 PPIA를 통해 microcystin이 80% 이상 분해되는 것을 확인하였다. Microcystin-LR의 분해를 HPLC 분석을 통해 재확인하였고, microcystin 분해산물로 추정되는 두 개의 peak를 확인하였다. 16S rRNA 염기서열을 이용한 계통분류 분석 결과, 본 연구에서 분리한 Microbacterium sp. MA21은 Alphaproteobacteria의 Sphingomonas 속에 속하지 않는 것은 물론 Actinobacteria에는 속하지만 기존에 보고되지 않은, 새로운 genus로 확인되었다.
This study measured the energy recovery rate of each municipal waste incineration facility according to the revised energy recovery rate estimation method, which targeted four municipal waste incineration facilities (Unit No. 7). The results calculated by the measuring instruments were used for each factor to estimate the recovery rate, and the available potential of available energy was examined by analyzing the energy production and valid consumption. As a result of the low heating value, 2,540 kcal/kg was calculated on average when the LHVw formula was applied, which is approximately 116 kcal/kg higher than the average design standard of 2,424 kcal/kg. The energy recovery rate was calculated as 96.9% on average based on production and 67.5% based on effective consumption, and the analysis shows that approximately 29.4% energy can be used.
The Stockholm Convention, which was adopted in Sweden in 2001 to protect human health and the environment, includes regulations for Persistent Organic Pollutant Rotors such as toxic and bioaccumulatives. Currently, there are 28 types of materials. This prohibits and limits the production, use, and manufacture of products. Korea is a member of the Convention, and it is necessary to prepare management and treatment plans to address the POP trends. Thus, we experimentally investigate whether the environmentally stable incineration is achieved when the sample is thermally treated using the Lab-scale (1 kg/hr). The target samples is pesticides in liquid phase and solid phase. In this study, organic chlorinated pesticides and their thermal characteristics were analyzed. We calculated the theoretical air volume based on the element analysis results. Because the interior of the reactor is small, more than 10 times of the air ratio was injected. The retention time was set to at least 4 seconds using a margin. The incineration temperature was 850℃ and 1100℃. Thus, we experimentally investigated whether the environmentally stable incineration was achieved when the sample was thermally treated using the Lab-scale (1 kg/hr). We analyzed five types of exhaust gas; the 02 concentration was high, but the CO amount decreased. Complete combustion is difficult because of the small size of the furnace due to the nature of Lab-scale. The organic chlorine-containing pesticide had an average decomposition rate of 99.9935%. Considering the decomposition rates of organic chlorine-containing pesticide in this study, the incineration treatment at over 2 ton/hour, which is typical for a conventional incinerator, is possible. Considering the occurrence of dioxins and unintentional persistent organic pollutants, it can operate at more than 1,100℃.
In this study, the results of PBDEs and HBCDs of the products and waste that contain BFRs such as domestic electronic products, automobiles and textile products were compared with international management standards, and their excess rates were calculated. Deca-BDE was detected among the PBDEs in TV rear cover plastics, car seats, automotive interior plastics, and automobile shredding residues of products and waste containing BFRs. The comparison with Basel Convention management standards (1,000 mg/kg) for PBDE-containing wastes (4 types in total) shows that the excess rate of all samples was less than 1.5%. The estimated excess rate compared to the EU and Basel convention management standards (1,000 mg/kg) for PBDEs (4 species + deca-BDE) and TV rear cover plastics was 37.5% (30 of 80 samples exceeded the standards). The estimated excess rate compared to the Basel convention management standards (1,000 mg/kg) for HBCD, building materials products and waste was 15.7% (17 of 108 samples exceeded the standards). In the case of PBDEs, it is necessary to remove only the rear cover of CRT TV among the electric and electronic products and treat it in the flame retardant treatment facility to improve the recycling collection system. In the case of HBCD, it is necessary to appropriately dispose of the recycled materials, heat insulation materials, TV plastics, and styrofoam in marine fishery among construction materials and restrict the use as recycled raw materials.
Dental caries is the destruction of the enamel of teeth by Streptoccus mutans. S. mutans has been isolated from human dental plaque and is associated with the initial development of enamel lesions. We have studied the antibacterial action of the fruit of Callistemon citrin us against a cariogenic bacterium, S. mutans. From the fruit of C. citrinus, piceatannol (3,3',4',5-tetrahydroxystilbene) was isolated by repeated column chromatography with SiO2 and Sephadex LH-20. Its structure was elucidated by instrumental analysis using 1D-NMR, 2D-NMR and EI-MS. This compound was isolated from the fruit of C. citrin us for the first time. The anticarcinogenic activity of this compound was determined by using agar well-diffusion method and minimal inhibition concentration (MIC).