검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,640

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2010년 경기도 양평군 자연리에서 발생한 땅밀림 지역의 활동연약대 부근 토양 물리적 특성을 파악하기 위해 토양분석을 실시하였다. 우리나라 산지는 기반암 상부의 표토층이 두텁지 않으므로 강우가 계속되면 물이 사면에 집중포화되어 점차 하부로 미끌어지기 쉽다. 급격하게 변화하는 기후로 인해 집중호우가 빈번히 발생하여 산지토사재해에 대한 관심과 경각심이 고조되고 있다. 본 연구는 산지토사재해 중 하나인 땅밀림의 물리적 특성을 파악하여 땅밀림의 선제적 대응에 대한 필요성을 제시하고자 수행하였다. 땅밀림의 평균 경사는 10.2°로 경사가 완만한 지형에서 발생하였다. 땅밀림의 활동연약대 단차지역의 상부와 하부지역을 분석한 후 과학적으로 비교하였다. 토양 삼각도를 이용하여 토양 형태를 판별한 결과, 미사토양, 점토성 모래토양, 모래토양 등으로 다양하였으며, 토양경도에 있어서 땅밀림지의 상부면의 경우 평균 18.74kgf/cm2, 하부면의 경우 평균 21.51 kgf/cm2 로 분석되었다. 땅밀림지의 상부면의 붕적토가 교란되어 경도가 낮게 형성되어 있었고, 단차로 붕괴되어 사면이 와해된 결과로 판단된다. 특히 인장균열 및 단차로 영향받은 하부 지역은 경도가 높으면서 토심이 깊게 측정되어 땅밀림에 취약한 결과를 나타내므로 단차가 발생된 활동연약대에 대해서 대책마련이 필요할 것으로 판단된다.
        4,000원
        2.
        2024.04 구독 인증기관·개인회원 무료
        To overcome the challenges in tracking insects underground, a detection method consisting of a metal detector and aluminum tag was developed for tracking a dung beetle, Copris ochus (Coleoptera: Scarabaeidae). First, detection rate was evaluated for varying volumes of aluminum tags varying orientations of the tags under soil. Then, the detection efficacy was evaluated in the field at varying depths of hidden tags in two types of vegetation. Finally, the effect of aluminum-tagging on the survivorship, burrowing depth, and horizontal movement of C. ochus adults were assessed. Generally, an increase in tag volume resulted in a greater detection depth with maximum depth of 17 cm. Orientation, however, did not affect detection rate except when tag was placed perpendicular to the soil surface. In the field, metal detectors could detect aluminum-tagged models with success rates ≥85% up to 10 cm and 45−60% at 20 cm under soil. Finally, no significant effect of tagging on survivorship and behaviors of C. ochus was observed.
        3.
        2024.04 구독 인증기관·개인회원 무료
        Ecosystems provide various ecosystem services based on biodiversity. However, biodiversity is facing crises due to anthropogenic factors such as pollution, land use change, and climate change. Threats to biodiversity can significantly impact the provision and stability of ecosystem services, extending beyond simple species decline. To address threats to biodiversity, it is crucial to evaluate how anthropogenic factors affect not only biodiversity but also ecosystem services. This study aims to investigate the energy flux in a post-mining area based on the biodiversity of soil ecosystems and assess its suitability as an evaluation metric. It was observed that as the concentration of the primary pollutant, arsenic, increased, both the biomass of soil organisms and energy flux decreased. Furthermore, soil ecosystem multifunctionality may be negatively affected by pollution. These findings contribute to understanding the impact of pollution on soil ecosystem biodiversity and energy flux in post-mining areas and provide important information for more effective conservation and management of ecosystem services.
        4.
        2024.04 구독 인증기관·개인회원 무료
        특정작물의 연작재배가 만연한 국내 경작지 중, 특히 인삼재배지는 인삼뿌리썩음병균, 시설재배지는 선충에 의한 연작피해가 매우 심각하며, 주로 화학·생물학 약제로 방제하지만 효과가 낮고 토양오염과 약제저항성 등의 부작용을 유발하고 있음. 모든 살아 있는 병해충은 고온에 저항성이 없는 장점에 착안하여 마이크로파(915MHz) 전력밀도 균일화 응용으로 경작지 토양 30cm 이상 깊이까지 100℃ 이상 침투 가열하는 마이크로파 방제장치 및 방제기술을 개발하여 토양 속에 존재하는 선충, 개미, 인삼뿌리썩음병균에 적용한 결과, 선충은 60℃, 개미는 50℃에서 완전사멸 되었으며, 인삼뿌리썩음병균은 80℃에서 연작 가능한 수치까지 떨어지는 방제 효과를 나타 냄에 따라 농약을 대체하는 방제기술로 평가된다.
        5.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구를 통해 국내에 분포하는 중기문응애류 중 파리응애과의 Holostaspella crenulata Krantz, 1967 (톱니무늬파리응애, 신칭) 와 화살응애 과의 Lasioseius floridensis Berlese, 1916 (가슴선화살응애, 신칭) 를 처음으로 확인하고, 각 종에 대한 분류학적 진단과 분포정보, 성충의 현미경사 진과 도판을 제시하였다.
        4,000원
        6.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전 세계적으로 급격하게 성장하는 스마트농업의 중요 요소 중 하나인 자동 관개시스템은 토양수분 센서에서 계측한 데이터를 기반으로 관개시점과 관개량을 판단하기 때문에 토양수분 센서의 설치가 필수적이다. 하지만 국내의 경우 토양을 고려하지 않고 단순히 포장의 가운데에 센서를 설치하는 등 토양수분 센서의 설치 위치에 대한 기준이 마련되어 있지 않아 토양수분 계측 위치에 관한 기준 검토가 필요하다. 본 연구에서 통계학적 방법을 이용하여 토양수분의 대표 계측지점을 선정 연구를 수행하였다. 토양은 수직적 또는 수평적으로 불균일성을 갖기에 구명이 쉽지 않다. 따라서 포장 전체에 걸쳐 지속해서 편향이 발생하지만 특정 위치에서의 평균 토양수분이 시간에 따라 유지한다는 시간 안정성 개념을 기반으로, 평균 토양수분을 나타내는 대표지점 선정 연구를 수행하였다. 토양수분을 측정하기 위한 시스템을 제작하였고, TDR (Time Domain Reflectometry) 센서를 이용하여 총 30개 지점을 측정하였다. 2023년 5월부터 8월까지 측정한 날짜·지점별 데이터를 이용하여, 지점의 편향을 정량화하여 식별할 수 있는 MRD (Mean Relative Difference, 평균상대차이)와 측정의 정밀도를 나타내는 RD (Relative Difference, 상대차이)의 SDRD (Standard Deviation of Relative Difference, 표준편차)를 산출하고, MRD와 SDRD를 통합한 지표로써 RMSE (Root Mean Square Error, 평균제곱근오차) 를 구하여, 시간 안정성이 가장 높은 지점인 RMSE의 수치가 최소인 지점을 대표지점으로 선정하였다. 토양수분 센서로 측정한 데이터를 사용하여 지점별 RMSE를 산출하고 비교하여, 평균적인 토양수분을 나타내는 대표지점을 선정할 수 있음을 확인하였다.
        4,000원
        7.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        신뢰성 있는 토양의 이산요소모델을 개발하기 위해서는 토양의 특성을 고려하여 매개변수를 교정해야 한다. 본 연구에서는 이산요소모델을 구성하는 각 매개변수가 토양 입자의 거동에 미치는 영향을 분석하였고, 분석된 결과를 이용하여 토양의 이산요소모델을 개발하였다. 민감도 분석의 대상이 되는 매개변수는 전단 계수, 마찰 계수, 표면 에너지 등으로 선정하였으며, 교정의 기준이 되는 토양의 특성은 가비중, 안식각, 점착력 및 내부마찰각으로 선정하였다. 또한, 토성이 서로 다른 해안가, 논 및 밭을 구성하는 토양을 대상으로 연구를 수행하여 다양한 토성에 대한 적용성을 확인하였다. 결과적으로 본 연구에서 수행한 민감도 분석 결과를 이용하여 각 토양의 거동을 모사할 수 있는 이산요소모델을 교정하였으며, 시험 결과와의 비교를 통해 교정된 이산요소모델을 검증하였다.
        4,500원
        8.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        토석 채취 후 식생복구지의 토양 특성은 복구 식생의 생육에 중요하다. 본 연구는 토석 채취 후 식생복구지와 인접 소나무 및 굴참나무 임분을 대상으로 0∼10cm, 10∼20cm, 20∼30cm 깊이에 토양의 물리·화학적 특성을 조사하였다. 토양용적밀도와 토양 pH는 식생복구지가 소나무나 굴참나무 임분에 비해 유의적으로 높았으나(P<0.05), 유기탄소와 전질소농도는 인접 산림지에 비해 낮았다. 유효 인은 0~10cm 깊이에서 식생복구지 와 산림지 간 유의적인 차이가 없었으나, 교환성 칼슘은 식생복구지가 인접 산림지에 비해 유의적으로 높게 나타났다. 토양 유기 탄소저장량은 식생복구지가 9,896 kg C ha-1로 소나무 임분 131,368 kg C ha-1나 굴참나무 임분 154,381 kg C ha-1에 비해 유의적으로 낮았으며 질소저장량도(식 생복구지: 2,406 kg N ha-1; 소나무: 10,496 kg N ha-1; 굴참나무: 8,081 kg N ha-1) 유사한 경향을 보였다. 그러나 인, 포타슘, 마그네슘 저장량은 식생복구지와 인접 산림 간 유의적인 차이는 없었다. 한편, 칼슘저장량은 식생복구지가 8,998 kg Ca ha-1로 소나무 임분 697 kg Ca ha-1나 굴참나무 임분 660 kg Ca ha-1에 비해 유의적으로 크게 나타났다. 본 연구 결과에 따르면 토석 채취 후 식생복구지는 토양용적밀도와 토양 pH를 낮추고 유기물의 증가와 질소 시비 같은 양분관리가 필요한 것으로 나타났다.
        4,000원
        9.
        2024.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study performed the seismic response analysis of an LNG storage tank supported by a disconnected piled raft foundation (DPRF) with a load transfer platform (LTP). For this purpose, a precise analytical model with simultaneous consideration of Fluid-Structure Interaction (FSI) and Soil-Structure Interaction (SSI) was used. The effect of the LTP characteristics (thickness, stiffness) of the DPRF system on the seismic response of the superstructure (inner and outer tanks) and piles was analyzed. The analytical results were compared with the response of the piled raft foundation (PRF) system. The following conclusions can be drawn from the numerical results: (1) The DPRF system has a smaller bending moment and axial force at the head of the pile than the PRF system, even if the thickness and stiffness of the LTP change; (2) The DPRF system has a slight stiffness of the LTP and the superstructure member force can increase with increasing thickness. This is because as the stiffness of the LTP decreases and the thickness increases, the natural frequency of the LTP becomes closer to the natural frequency of the superstructure, which may affect the response of the superstructure. Therefore, when applying the DPRF system, it is recommended that the sensitivity analysis of the seismic response to the thickness and stiffness of the LTP must be performed.
        4,300원
        10.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        식물의 흡수를 통한 공기오염물질 제거는 생육 상태에 따라 그 효과가 달라진다. 실내에서 토양수분의 공급은 식물의 생 육을 위한 기본적인 관리 사항이다. 따라서 본 연구는 토양수 분함량에 따른 생리적 반응이 가스상 공기오염물질인 톨루엔 저감에 미치는 영향을 구명하고, 최적의 생육과 공기 정화 효 과를 위한 적정 토양수분함량을 찾고자 수행하였다. 이를 위 해 스파티필름과 파키라를 사용하여 40일 동안의 평균 토양 수분함량을 25%, 20%, 15%, 10%로 처리한 후 양자수율, 광 합성률, 기공전도도, 증산량 등 생리적 지수와 엽면적당 톨루 엔 저감량을 측정하였다. 그 결과 스파티필름은 토양수분함량 을 20~25%로 관리할 때 생육이 양호하고 최적의 톨루엔 저 감 효과를 얻을 수 있을 것으로 판단되며, 10% 이하 건조에 대한 주의가 요구된다. 반면 파키라는 토양수분함량 20% 이 하 처리구에서 톨루엔 저감량이 증가하였으나 10% 처리구에 서 생장량이 저하될 가능성이 있으므로, 공기 정화와 생육을 위한 최적 토양수분함량은 15~20% 범위이며, 25% 이상으로 장기간 유지하는 것은 과습을 유발할 가능성이 있는 것으로 판단된다.
        4,000원
        11.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study conducted an investigation into the effects of fruit type and cultivation practices (organic and conventional) on soil characteristics and soil arthropod communities within apple, blueberry, grape, peach, and pear orchards. The collection of soil arthropod communities was achieved through the utilization of pitfall traps, with concurrent measurements taken for soil moisture content, electrical conductivity, and temperature. The findings of this study unveiled substantial impacts attributed to fruit type and cultivation practices on soil characteristics. Specifically, within organic apple orchards, discernibly higher levels of soil moisture content, electrical conductivity, and temperature were observed when compared to their conventional counterparts. The investigation into soil arthropod communities yielded a total of 1,527 individuals, classified in to five phyla and 15 orders. The range of abundance, species richness, and diversity indices varied across conventional and organic orchards. Cultivation practices were found not to exert a significant influence on soil arthropod community characteristics. However, Non-metric Multidimensional Scaling (NMDS) analysis indicated a significant differentiation in soil arthropod community structure based on cultivation practices. This study underscores the importance of considering vegetation structure and environmental characteristics that may influence soil arthropod communities comprehensively when assessing the impact of cultivation practices on soil arthropods. Furthermore, it emphasizes the need to account for both the characteristics and structure of soil arthropod communities in understanding the implications of cultivation practices on these organisms.
        4,000원
        12.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study measured soil respiration in pine forests dominated by Pinus densiflora in Mt. Jeombong, Mt. Namsan, Mt. Jirisan in Republic of Korea from 2009 to 2010. The seasonal variations, along with temperature and soil moisture content, were measured to understand the characteristics at each site. Soil respiration was highest in summer and autumn, closely influenced by the increase in soil temperature. Throughout the measurement period, soil respiration ranged from 205.6 to 312.2 mg CO2 m-2 h-1, with Mt. Namsan showing the highest values and Mt. Jirisan the lowest. A strong correlation was observed between soil respiration and soil temperature, with Q10 values ranging from 2.5 to 3.0. Precipitation significantly affected soil moisture content, and although it appeared to influence soil respiration, no significant correlation was found.
        4,000원
        13.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mangroves are distributed in intertidal zones of coastal environments or estuarine margins, playing a critical role in the global carbon cycle. However, understanding of the carbon cycle role of mangrove associates in the Republic of Korea is still limited. This research measured soil respiration and leaf gas exchange in three habitats of Hibiscus hamabo (Gimnyeong, Seongsan, and Wimi) and analyzed the impacts on sites and months. Soil respiration was measured once a month from June to October 2022 and leaf gas exchange was measured monthly from June to September 2022. Soil respiration in August (5.7±0.8 μmol CO2 m-2 s-1) was significantly higher than that in other months (p<0.001) and soil respiration increased as air temperature increased (p<0.001). In Seongsan, net photosynthesis in July (9.0±0.9 μmol m-2 s-1) was significantly higher than that in other months (p<0.001). Net photosynthesis increased as stomatal conductance and transpiration rate increased during the entire period (p<0.001). Furthermore, a weak positive linear relationship was observed between soil respiration and net photosynthesis (r2=0.12; p<0.01). The results indicated that soil respiration was influenced not only by air temperature and season but also by net photosynthesis. This study is expected to provide basic information on the carbon dynamics of mangrove associates.
        4,000원
        14.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To investigate the impact of forestry projects on the carbon stocks of forests, we estimated the carbon stock change of above-ground and soil before and after forestry projects using forest type maps, forestry project information, and soil information. First, we selected six map sheet with large areas and declining age class based on forest type map information. Then, we collected data such as forest type maps, growth coefficients, soil organic matter content, and soil bulk density of the estimated areas to calculate forest carbon storage. As a result, forest carbon stocks decreased by about 34.1~70.0% after forestry projects at all sites. In addition, compared to reference studies, domestic forest soils store less carbon than the above-ground, so it is judged that domestic forest soils have great potential to store more carbon and strategies to increase carbon storage are needed. It was estimated that the amount of carbon stored before forestry projects is about 1.5 times more than after forestry projects. The study estimated that it takes about 27 years for forests to recover to their pre-thinning carbon stocks following forestry projects. Since it takes a long time for forests to recover to their original carbon stocks once their carbon stocks are reduced by physical damage, it is necessary to plan to preserve them as much as possible, especially for highly conservative forests, so that they can maintain their carbon storage function.
        4,000원
        15.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To understand microorganism effects on wild mushroom fruiting bodies, we investigated the fungi in hyphosphere soil supporting wild mushroom species Cortinarius violaceus, Amanita hemibapha, Laccaria vinacelavellanea, and Amanita verna found in the Gotjawal area of Jeju Island. Fungal species identification based on morphological traits and molecular analysis of ITS, LSU rDNA, and -tubulin gene sequences resulted in isolation and identification of eleven fungal species previously unrecorded in Korea. These newly-recorded species are: Arthrinium kogelbergensis, Kalmusia longisporum, Keithomyces carneum, Neopyrenochaeta cercidis, Penicillium ranomafanaense, Phomatodes nebulosa, Pyrenochaeta nobilis, Tolypocladium album, Talaromyces kendrickii, Talaromyces qii, and Umbelopsis gibberispora, and their morphological characteristics and phylogenetic positions are described.
        4,500원
        16.
        2023.11 구독 인증기관·개인회원 무료
        When decommissioning a nuclear power plant, it is expected that clearance or radioactive waste (e.g., soil, concrete, metal, etc.) below the low-level will be generated in a short period on a large scale. Among the various types of waste, most of the contaminated soil is known to be classified as clearance or the (very) low-level radioactive waste. Accordingly, an accurate measurement and classification of contaminated soil in real-time during the decommissioning process can efficiently reduce the amount of soil waste and the possibility of contamination diffusion. However, in order to apply a system that measures and classifies contaminated soil in real-time according to the level of contamination to the decommissioning site, a demonstration is required to evaluate whether the system is applicable to the site. In this study, to establish requirements for determining the applicability of the system to the decommissioning site, preceding cases from countries with abundant decommissioning experience were investigated. For example, MACTEC of the U.S. demonstrated the developed system at the Saxton nuclear power plant in the U.S. and confirmed that the amount of soil that can be analyzed per hour in the system is affected by radionuclides, minimum detectable activity (MDA), and applicable volume. In the future, therefore, we will utilize the result of this study to develop the requirements of demonstrating the system for measurement and classification of contaminated soil in real-time.
        17.
        2023.11 구독 인증기관·개인회원 무료
        Recently, BNS (Best System) developed a system for evaluation and classification of soil and concrete wastes generated from nuclear power plant decommissioning. It is composed of various modules for container loading, weight measurement, contamination evaluation, waste classification, stacking, storage and control. The contamination evaluation module of the system has two sub modules. One is for quick measurement with NaI (Tl) detector and the other is for accurate measurement with HPGe detector. The container used at the system for wastes handling has capacity of 100 kg and made of stainless steel. According to the measurement result of Co-60 and Cs-137, the waste is classified as waste for disposal or waste for clearance. Performance of the system was demonstrated using RM (Reference Material) radiation source. This year, necessity of system improvement was suggested due to revised operation requirements. So, the system should show throughput of more than 1 ton/hr and Minimum Detectable Activity (MDA) of less than 0.01 Bq/g (1/10 of criteria for regulatory clearance) for Co-60 and Cs-137. And soil waste become main target of the system. For this, the container used for soil waste handling should have capacity of 200 kg. As a result, material for the container need to be changed from stainless steel to plastic or FRP (Fiber Reinforced Plastics). And large area detector should be introduced to the system to enhance processing speed of the system. Additionally, container storage rack and conveyor system should be modified to handle 200 kg capacity container. Finally, moving path of the container will be redesigned for enhanced throughput of the system. In this paper, concept development of the system was suggested and based on that, system development will be followed.
        18.
        2023.11 구독 인증기관·개인회원 무료
        For the release of the nuclear power plant site after the decommissioning, a reliable exposure dose assessment considering the environmental impact of residual radionuclides is essentially required. In this study, the Derived Concentration Guideline Level (DCGL) for the hypothetically contaminated surface soil at the Wolsong nuclear power plant (NPP) unit 1 site was preliminarily calculated by using the RESRAD-OFFSITE computational code and compared with the other case studies. Moreover, radiation exposure dose for local residents and relevant exposure pathways were quantitatively analyzed based on the calculation model established through this work. For the target site modeling, the source term was determined by referring to the previous case studies regarding the nuclear power plant decommissioning, quantification analysis data of pressure tubes of Wolsong NPP unit 1, and radionuclide data estimated by using the MCNP/ORIGEN-2 code. In total, 14 different radioisotopes such as Ag-108m, C-14, Co-60, Cs-134/137, Fe-55, H-3, Nb-93m/94, Ni-63, Sb-125, Sn-121m, Sr-90, and Zr-93 were considered as target radionuclides. In addition, the geological structure model of the Wolsong NPP site was established based on the final safety analysis report of Wolsong NPP unit 1. The distribution coefficients (Kd) were taken from the JAEA-SDB to estimate the migration/retardation behavior of various radionuclides under the groundwater condition of the Wolsong NPP site. In the present work, the DCGL values were calculated according to the site release criterion of 0.1 mSv/yr, which indicates the radiation protection standard for the site release. Moreover, the exposure pathway and sensitivity analyses were conducted to assess the sensitive input parameters remarkably influencing the calculation result. For the evaluation of exposure dose for local residents, a site layout centered around Wolsong NPP unit 4, located in the closest proximity to the residents’ habitation area, was alternatively established and all potential exposure pathways were considered as a comprehensive resident farmer scenario. The results obtained from this study are expected to serve as a preliminary case study for the DCGL values regarding the surface soil at the Wolsong NPP unit 1 site and for evaluating the radiation exposure dose to local residents resulting from the residual radioactivity at the site after the decommissioning.
        19.
        2023.11 구독 인증기관·개인회원 무료
        Economical radioactive soil treatment technology is essential to safely and efficiently treat of high-concentration radioactive areas and contaminated sites during operation of nuclear power plants at home and abroad. This study is to determine the performance of BERAD (Beautiful Environmental construction’s RAdioactive soil Decontamination system) before applying magnetic nanoparticles and adsorbents developed by the KAERI (Korea Atomic Energy Research Institute) which will be used in the national funded project to a large-capacity radioactive soil decontamination system. BERAD uses Soil Washing Process by US EPA (402-R-007-004 (2007)) and can decontaminate 0.5 tons of radioactive soil per hour through water washing and/or chemical washing with particle size separation. When contaminated soil is input to BERAD, the soil is selected and washed, and after going through a rinse stage and particle size separation stage, it discharges decontaminated soil separated by sludge of less than 0.075 mm. In this experiment, the concentrations of four general isotopes (A, B, C, and D which are important radioisotopes when soil is contaminated by them.) were analyzed by using ICP-MS to compare before and after decontamination by BERAD. Since BERAD is the commercial-scale pilot system that decontaminates relatively large amount of soil, so it is difficult to test using radioactive isotopes. So important general elements such as A, B, C, and D in soil were analyzed. In the study, BERAD decontaminated soil by using water washing. And the particle size of soil was divided into a total of six particle size sections with five sieves: 4 mm, 2 mm, 0.850 mm, 0.212 mm, and 0.075 mm. Concentrations of A, B, C, and D in the soil particles larger than 4 mm are almost the lowest regardless of before and after decontamination by BERAD. For soil particles less than 4 mm, the concentrations of C and D decreased constantly after BERAD decontamination. On the other hand, the decontamination efficiency of A and B decreased as the soil particle became smaller, but the concentrations of A and B increased for the soil particle below 0.075 mm. As a result, decontamination efficiency of one cycle using BERAD for all nuclides in soil particles between 4 mm and 0.075 mm is about 45% to 65 %.
        20.
        2023.11 구독 인증기관·개인회원 무료
        In the decommissioning site of Korean Research Reactor 1&2 (KRR-1&2), according to Low and Intermediate-level Radioactive Waste Disposal Acceptance Criteria of the Korea Radioactive Waste Agency (WAC-SIL-2022-1), characteristics of radioactive waste was conducted on approximately 550 drums of concrete and soil waste for a year starting from 2021. Among them, 50 drums of concrete waste transported and disposed to Gyeongju LILW disposal facility at the end of 2022. For the remaining approximately 500 drums of concrete and soil waste stored on-site, they were reclassified into two categories: permanent disposal grade and clearance grade. This classification was based on calculating the sum of fractions (SOF) per drum for each radionuclides. The plan is to dispose of around 200 drums in the permanent disposal grade and about 300 drums in the clearance grade by the end of 2023. Since concrete and soil decommissioning wastes are generated in large quantities over a short period with similar origins, they were grouped within five drums as suggested by the acceptance criteria. Mixed samples were collected from each group and used for radionuclide analysis. When utilizing mixed samples, three distinct samples are collected and analyzed for each group. The maximum value among these three radionuclide analysis results is then uniformly applied as the radionuclide concentration value for all drums within that group. Radioactive nuclides contained in similar types of radioactive waste with similar origins can be expected to have some statistical distribution. However, There has been no verification as to whether the maximum value among the three mixed samples exists within the statistical distribution or if it deviates from this distribution to represent a different value. In this study, we confirmed characteristics of radionuclide concentration distribution by examining and comparing radionuclide concentration distributions for radioactive wastes drum grouped for nuclear characteristic among 50 concrete wastes drum disposed in year 2022 and 500 concretes & soils drum scheduled for disposal (clearance or permanent disposal) in year 2023. In particular, when comparing tritium to other nuclides, it was observed that the standard deviation for the distribution of maximum values was approximately 318 times larger.
        1 2 3 4 5