검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 637

        283.
        2010.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this paper two aspects of the percolation and conductivity of carbon black-filled polyethylene matrix composites will be discussed. Firstly, the percolation behavior, the critical exponent of conductivity of these composites, are discussed based on studying the whole change of resistivity, the relationship between frequency and relative permittivity or ac conductivity. There are two transitions of resistivity for carbon black filling. Below the first transition, resistivity shows an ohmic behavior and its value is almost the same as that of the matrix. Between the first and second transition, the change in resistivity is very sharp, and a non-ohmic electric field dependence of current has been observed. Secondly, the electrical conduction property of the carbon black-filled polyethylene matrix composites below the percolation threshold is discussed with the hopping conduction model. This study investigates the electrical conduction property of the composites below the percolation threshold based on the frequency dependence of conductivity in the range of 20 Hz to 1 MHz. There are two components for the observed ac loss current. One is independent of frequency that becomes prevalent in low frequencies just below the percolation threshold and under a high electrical field. The other is proportional to the frequency of the applied ac voltage in high frequencies and its origin is not clear. These results support the conclusion that the electrical conduction mechanism below the percolation threshold is tunneling.
        4,000원
        284.
        2010.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The fabrication of interconnect from titanium powders and powders is investigated. Corrosion-resistant titanium and are used as reinforcement in order to reveal high heat and corrosion resistance at the elevated temperature. We fabricated the plates for interconnect reinforced with by mixing titanium powders with 10 wt.% of nano-sized . Spark Plasma Sintering (SPS) was chosen for the sintering of these composites. The plate made of titanium powders and powders demonstrates higher corrosion resistance than that of the plate of titanium powders alone. The physical properties of specimens were analyzed by performing hardness test and biaxial strength test. The electrochemical properties, such as corrosion resistance and hydrogen permeability at high temperature, were also investigated. The microstructures of the specimens were investigated by FESEM and profiles of chemical compositions were analyzed by EDX.
        4,000원
        285.
        2010.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon-nanotube-embedded bismuth telluride (CNT/) matrix composites were fabricated by a powder metallurgy process. Composite powders, whereby 5 vol.% of functionalized CNTs were homogeneously mixed with alloying powders, were successfully synthesized by using high-energy ball milling process. The powders were consolidated into bulk CNT/ composites by spark plasma sintering process at for 10 min. The fabricated composites showed the uniform mixing and homogeneous dispersion of CNTs in the matrix. Seebeck coefficient of CNT/ composites reveals that the composite has n-type semiconducting characteristics with values ranging to with increasing temperature. Furthermore, the significant reduction in thermal conductivity has been clearly observed in the composites. The results showed that CNT addition to thermoelectric materials could be useful method to obtain high thermoelectric performance.
        4,000원
        286.
        2010.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        It is necessary to develop new methods to prevent catastrophic failure of structural material in order to avoid accidents and conserve natural and energy resources. Design of intelligent materials with a self-diagnosing function to prevent fatal fracture of structural materials was achieved by smart composites consisting of carbon fiber tows or carbon powders with a small value of ultimate elongation and glass fiber tows with a large value of ultimate elongation. The changes in electrical resistance of CF-GFRP/GFRP (carbon fiber and glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased abruptly with increasing strain, and a tremendous change was seen at the transition point where carbon fiber tows were broken. Therefore, the composites were not to monitor damage from the early stage. On the other hand, the change in electrical resistance of CP-GFRP/GFRP (carbon powder dispersed in glass fiber-reinforced plastics/glass fiber-reinforced plastics) composites increased almost linearly in proportion to strain. CP-GFRP/GFRP composites are superior to CF-GFRP/GFRP composites in terms of their capability to monitor damage by measuring change in electrical resistance from the early stage of damage. However, the former was inferior to the latter as an application because of the difficulties of mass production and high cost. A method based on monitoring damage by measuring changes in the electrical resistance of structural materials is promising for improved reliability of the material.
        4,000원
        287.
        2010.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The (1-x)La0.7Sr0.3MnO3(LSMO)/xZnFe2O4(ZFO) (x = 0, 0.01, 0.03, 0.06 and 0.09) composites were prepared by a conventional solid-state reaction method. We investigated the structural properties, magnetic properties and electrical transport properties of (1-x)LSMO/xZFO composites using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-cooled dc magnetization and magnetoresistance (MR) measurements. The XRD and SEM results indicate that LSMO and ZFO coexist in the composites and the ZFO mostly segregates at the grain boundaries of LSMO, which agreed well with the results of the magnetic measurements. The resistivity of the samples increased by the increase of the ZFO doping level. A clear metal-to-insulator (M-I) transition was observed at 360K in pure LSMO. The introduction of ZFO further downshifted the transition temperature (350K-160K) while the transition disappeared in the sample (x = 0.09) and it presented insulating/semiconducting behavior in the measured temperature range (100K to 400K). The MR was measured in the presence of the 10kOe field. Compared with pure LSMO, the enhancement of low-field magnetoresistance (LFMR) was observed in the composites. It was clearly observed that the magnetoresistance effect of x = 0.03 was enhanced at room temperature range. These phenomena can be explained using the double-exchange (DE) mechanism, the grain boundary effect and the intrinsic transport properties together.
        4,000원
        288.
        2010.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Titanium dioxide (TiO2) particles deposited on different quantitative Fe-treated carbon nanotube (CNT) composites with high photocatalytic activity of visible light were prepared by a modified sol-gel method using TNB as a titanium source. The composites were characterized by BET, XRD, SEM, TEM and EDX, which showed that the BET surface area was related to the adsorption capacity for each composite. From TEM images, surface and structural characterization of for the CNT surface had been carried out. The XRD results showed that the Fe-ACF/TiO2 composite mostly contained an anatase structure with a Fe-mediated compound. EDX results showed the presence of C, O, and Ti with Fe peaks in the Fe-CNT/TiO2 composites. The photocatalytic activity of the composites was examined by degradation of methylene blue (MB) in aqueous solution under visible light, which was found to depend on the amount of CNT. The highest photocatalytic activity among the different composites was related to the optimal content of CNT in the Fe-CNT/TiO2 composites. In particular, the photocatalytic activity of the Fe-CNT/TiO2 composites under visible light was better than that of the CNT/TiO2 composites due to the introduction of Fe particles.
        4,000원
        290.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 국내에서 최초로 완전 복합신소재 교량을 현장 적용하여, 실제 차량하중 재하실험 및 공용 중 내 하력 평가를 실시 하였고 설계 제작 설치 등을 기술하였다. 현장적용에 앞서 교량상부구조 설계에 대한 검증을 위해 축소모형 교량상부구조를 제작하여 실내실험을 실시 하였다. 실험결과의 타당성을 검증하고자 유한요소해석의 결과와 비교하였다 분석된 자료는 향후 복합신소재 교량의 설계 제작 설치에 대해 기초자료로 제공될 수 있기 를 기대한다. 장기거동 성능에 대한 충분한 데이터가 없지만 복합신소재가 소형 교량에 혁신적인 재료임을 본 연구를 통하여 확인할 수 있다. 그리고 현장재하실험을 통한 공용중인 상태에서 복합신소재 교량의 내하력등급을 통하여 장기 성능실험에 대한 자료를 제공할 수 있었다. 따라서 본 자료는 복합신소재 교량의 장기 성능평가에 자료로 제공 될 수 있다 .
        4,300원
        291.
        2010.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Methylene blue (MB) was degraded by TiO2 and ZnO deposited on an activated carbon fiber (ACF) surface under UV light. The ACF/TiO2 and ACF/ZnO composites were characterized by BET, SEM, XRD, and EDX. The BET surface area was related to the adsorption capacity for composites. The SEM results showed that titanium dioxide and zinc oxide are distributed on the ACF surface. The XRD results showed that the ACF/TiO2 and ACF/ZnO composites contained a unique anatase structure for TiO2 and a typical hexagonal phase for ZnO respectively. These EDX spectra showed the presence of peaks of Ti element on ACF/TiO2 composite and peaks of Zn element on the ACF/ZnO composite. The blank experiments for either illuminating the MB solution or the suspension containing ACF/TiO2 or ACF/ZnO in the dark showed that both illumination and the catalyst were necessary for the mineralization of organic dye. Additionally, the ACF/TiO2 composites proved to be efficient photocatalysts due to degradation of MB at higher reaction rates. The addition of an oxidant ([NH4]2S2O8) led to an increase of the degradation rate of MB for ACF/TiO2 and ACF/ZnO composites.
        4,000원
        292.
        2009.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Temperature dependency of resistivity of the carbon black-polyethylene composites below and above percolation threshold is studied based on the electrical conduction mechanism. Temperature coefficient of resistance of the composites below percolation threshold changed from minus to plus, increasing volume fraction of carbon black; this trend decreased with increasing volume fraction of carbon black. The temperature dependence of resistivity of the composites below percolation threshold can be explained with a tunneling conduction model by incorporating the effect of thermal expansion of the composites into a tunneling gap. Temperature coefficient of resistance of the composites above percolation threshold was positive and its absolute value increased with increasing volume fraction of carbon black. By assuming that the electrical conduction through percolating paths is a thermally activated process and by incorporating the effect of thermal expansion into the volume fraction of carbon black, the temperature dependency of the resistivity above percolation threshold has been well explained without violating the universal law of conductivity. The apparent activation energy is estimated to be 0.14 eV.
        4,000원
        293.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        based composites are candidate materials for ultra-high temperature materials (UHTMs). has become an indispensable ingredient in UHTMs, due to its high melting temperature, relatively low density, and excellent resistance to thermal shock or oxidation. powders are usually synthesized by solid state reactions such as carbothermal, borothermal, or combined carbothermal reaction. SiC is added to this system in order to enhance the oxidation resistance of . In this study, ?based composites were successfully synthesized and densified through two different processing paths. or 25 vol.%SiC was fully synthesized from oxide starting materials with reducing agents after heat treatment at 1400. Besides, ?20 vol.%SiC was fully densified with as a sintering additive after hot pressing at 1900. The synthesis mechanism and the effect of sintering additives on densification of ?SiC composites were also discussed.
        4,000원
        294.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.
        4,000원
        295.
        2009.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with a thin layer of 1 wt% Al-doped ZnO using rf magnetron sputtering deposition. Morphological studies clearly revealed that the ZnO appeared to form beadshaped crystalline nanoparticles with an average diameter as small as 30 nm, attaching to the surface of the nanotubes. It was found that the NO gas sensing properties of the ZnO-CNT layered composites were dramatically improved over Al-doped ZnO thin films. It is reasoned from these observations that an increase in the surface-to-volume ratio associated with the numerous ZnO “nanobeads” on the surface of the CNTs results in the enhancement of the NO gas sensing properties. The ZnO-CNT layered composite sensors exhibited a maximum sensitivity of 13.7 to 2 ppm NO gas at a temperature of 200˚C and a low NO gas detection limit of 0.2 ppm in dry air.
        4,000원
        296.
        2009.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated the effects of Co doping on the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with ZnO using pulsed laser deposition. Structural examinations clearly confirmed a distinct nanostructure of the CNTs coated with ZnO nanoparticles of an average diameter as small as 10 nm and showed little influence of doping 1 at.% Co into ZnO on the morphology of the ZnO-CNT composites. It was found from the gas sensing measurements that 1 at.% Co doping into ZnO gave rise to a significant improvement in the response of the ZnO-CNT composite sensor to NO gas exposure. In particular, the Co-doped ZnO-CNT composite sensor shows a highly sensitive and fast response to NO gas at relatively low temperatures and even at low NO concentrations. The observed significant improvement of the NO gas sensing properties is attributed to an increase in the specific surface area and the role as a catalyst of the doped Co elements. These results suggest that Co-doped ZnOCNT composites are suitable for use as practical high-performance NO gas sensors.
        4,000원
        297.
        2009.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        BaTiO3/epoxy composites have been widely investigated as promising materials for embedded capacitors in printed circuit boards. It is generally known that the dielectric constant (K) of the BaTiO3/epoxy composites increases with improvement of the dispersion of BaTiO3 particles in the epoxy matrix that comes from adding surfactant. The influences of surfactant addition on the dielectric properties of the BaTiO3/epoxy composites are reported in the present study. The dielectric constant of the BaTiO3/epoxy composites is not significantly affected by the surfactant addition. However, the temperature coefficient of capacitance increases and the peel strength decreases as the amount of added surfactant increases. The influences of surfactant addition on the dielectric properties of the neat epoxy are also very similar to those of the BaTiO3/epoxy composites. The residual surfactant in the BaTiO3/epoxy composites affects the temperature coefficient of capacitance and the peel strength of the epoxy matrix, which in turn affects the temperature coefficient of capacitance and the peel strength of the BaTiO3/epoxy composites.
        4,000원
        298.
        2009.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Si-C composite with hollow spherical structure was synthesized using ultrasonic treatment of organosilica powder formed by hydrolysis of phenyltrimethoxysilane. The prepared powder was pyrolyzed at various temperatures ranging from 900 to 1300 ˚C under nitrogen atmosphere to obtain optimum conditions for Li-ion battery anode materials with high capacity and cyclability. The XRD and elemental analysis results show that the pyrolyzed Si/C composite at 1100 ˚C has low oxygen and nitrogen levels, which is desirable for increasing the electrochemical capacity and reducing the irreversible capacity of the first discharge. The solid Si-C composite electrode shows a first charge capacity of ~500 mAhg-1 and a capacity fade within 30 cycles of 0.93% per cycle. On the other hand, the electrochemical performance of the hollow Si-C composite electrode exhibits a reversible charge capacity of ~540 mAhg-1 with an excellent capacity retention of capacity loss 0.43% per cycle up to 30 cycles. The improved electrochemical properties are attributed to facile diffusion of Li ions into the hollow shell with nanoscale thickness. In addition, the empty core space provides a buffer zone to relieve the mechanical stresses incurred during Li insertion.
        4,000원
        299.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Zr-based bulk metallic glass matrix composites of a mixture of gas-atomized metallic glass powders and Fe-based nanostructured powders were fabricated by spark plasma sintering. The Fe-based nanostructured powders adopted for the enhancement of plasticity were well distributed in the matrix after consolidation, and the matrix remains as a fully amorphous phase. The successful consolidation of metallic glass matrix composite with high density was attributed to viscous flow in the supercooled liquid state during spark plasma sintering. Unlike other amorphous matrix composites, in which improved ductility could be obtained at the expense of their strength, the developed composite exhibited improvement both in strength and ductility. The ductility improvement in the composite was considered to be due to the formation of multiple shear bands under the presence of the Fe-based nanostructured particles.
        4,000원
        300.
        2009.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Reflection properties, such as specular reflection and diffuse reflection, are very important optical properties for the reflector, which has high reflectance in the display and architecture industry. Calcite is lowcost, nontoxic, and stable over a wide temperature range. Therefore, it is one of the most widely using fillers in many industries and has some advantages over titania as a filler to improve reflectance. However, optical properties, especially those of ceramic-filled composites, have not been analyzed. We studied the reflectance of calcite composites with their surface roughness. The reflectance of the composites was determined using a UV-visible spectrometer. The surface morphology and the micro-structure of the composites were investigated by atomic force microscope. The reflectance of the composites was improved by increasing the content of calcite in the calcite-frit composite. The reflectance is related with the surface roughness in the composites. However, the reflectance depends on the calcite contents in materials with similar surface roughness.
        4,000원