검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,810

        350.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Isotropic pitch-based carbon fiber was successfully prepared from tetrahydrofuran-soluble fraction of coal tar pitch cocarbonization with petrolatum by air-blowing. The effects of reaction temperature and time, amount of petrolatum added on the composition and spinning properties of resultant pitches were investigated. It indicated that petrolatum could effectively improve the softening point, aromaticity, hydrogen content and molecular weight of the resultant pitches by promoting cross-linking and dehydrogenation polymerization reactions at low air-blowing temperature. Moreover, more aliphatic and naphthenic structures had been introduced into resultant pitches as addition of petrolatum and also inhibited the generation of quinoline-insoluble particles. The obtained green fibers were facile to be stabilized and carbonized and the resultant carbon fibers showed fully isotropic and finer, uniform diameter with smooth surface and higher tensile strength of up to 0.92 GPa. It provided a facile chemical modification method for isotropic pitch-based carbon fiber production.
        4,800원
        351.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The hydrogen reduction behavior of the CuO-Co3O4 powder mixture for the synthesis of the homogeneous Cu-15at%Co composite powder has been investigated. The composite powder is prepared by ball milling the oxide powders, followed by a hydrogen reduction process. The reduction behavior of the ball-milled powder mixture is analyzed by X-ray diffraction (XRD) and temperature-programmed reduction at different heating rates in an Ar-10%H2 atmosphere. The scanning electron microscopy and XRD results reveal that the hydrogen-reduced powder mixture is composed of fine agglomerates of nanosized Cu and Co particles. The hydrogen reduction kinetics is studied by determining the degree of peak shift as a function of the heating rate. The activation energies for the reduction of the oxide powders estimated from the slopes of the Kissinger plots are 58.1 kJ/mol and 65.8 kJ/mol, depending on the reduction reaction: CuO to Cu and Co3O4 to Co, respectively. The measured temperature and activation energy for the reduction of Co3O4 are explained on the basis of the effect of pre-reduced Cu particles.
        4,000원
        355.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Based on the M06-2X density functional, the catalytic oxidation of CO by O2 over Mo-embedded graphene was investigated in detail. The model with molybdenum atom embedded in double vacancy (DV) in a graphene sheet was considered. It is found that the complete CO oxidation reactions over Mo-DV-graphene include a two-step process, in which the first step prefers to Langmuir–Hinshelwood mechanism and followed the progress of CO oxidation with a remaining atomic Otop. Compared with the structure of Mo atom decorated at the single carbon vacancy on graphene (Mo-SV-graphene), the catalytic activity of Mo-DV-graphene is weaker. The present results imply that the catalytic activity of Mo-embedded graphene for CO oxidation can be improved by increasing the ratio of single vacancy (SV).
        4,000원
        356.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present work is aimed at evaluating the kinetics and dynamic adsorption of methylene blue by CO2- activated carbon gels. The carbon gels were characterized by textural properties, thermal degradation and surface chemistry. The result shows that the carbon gels are highly microporous with surface area of 514 m2/g and 745 m2/g for resorcinol-to-catalyst ratios of 1000 (AC1) and 2000 (AC2), respectively. The kinetics data could be described by pseudo-first-order model, with a longer duration to attain equilibrium due to restricted pore diffusion as concentration increases. Also, AC1 exhibits insignificant kinetics with fluctuating adsorption with time at concentrations of 20 and 25 mg/L. However, AC1 reveals a better performance than AC2 in dynamic adsorption due to concentration gradient for molecules diffusion to active sites. The applicability of Yoon–Nelson and Thomas models indicates that the dynamic adsorption is controlled by external and internal diffusion.
        4,000원
        357.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        TiO2-particles containing Co grains are fabricated via thermal hydrogenation and selective oxidation of Ti- Co alloy. For comparison, TiO2-Co composite powders are prepared by two kinds of methods which were the mechanical carbonization and oxidation process, and the conventional mixing process. The microstructural characteristics of the prepared composites are analyzed by X-ray diffraction, field-emission scattering electron microscopy, and transmission electron microscopy. In addition, the composite powders are sintered at 800℃ by spark plasma sintering. The flexural strength and fracture toughness of the sintered samples prepared by thermal hydrogenation and mechanical carbonization are found to be higher than those of the samples prepared by the conventional mixing process. Moreover, the microstructures of sintered samples prepared by thermal hydrogenation and mechanical carbonization processes are found to be similar. The difference in the mechanical properties of sintered samples prepared by thermal hydrogenation and mechanical carbonization processes is attributed to the different sizes of metallic Co particles in the samples.
        4,000원
        358.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 이산화탄소 친화적인 PBEM-POEM (PBE) 공중합체를 기반으로 고분자 블렌드 분리막을 제조하 는 방법을 제시한다. PBE 공중합체는 자유 라디칼 중합 반응을 통해 손쉽게 합성이 가능하며, 이를 상용 고분자인 PEG와 다 양한 비율로 혼합하여 이산화탄소/질소 분리막을 제조하였다. 이산화탄소/질소 분리 성능을 테스트한 결과, PEG의 함량이 높을수록 이산화탄소 투과도는 감소하는 반면 이산화탄소/질소 선택도는 크게 증가하는 상충(trade-off) 관계가 나타났다. 그러 나 PBE/PEG (9 : 1)과 PBE/PEG (7 : 3)을 비교하면 이산화탄소 투과도는 단지 8.3% 감소한 반면에 질소 투과도는 69.1%나 감소하였다. 따라서 이산화탄소/질소 선택도가 33.8에서 100.3으로 크게 증가하였다. 이것은 PBE 공중합체의 80%를 차지하 는 POEM 사슬이 PEG와 상호작용하여 더욱 조밀한 구조가 되었기 때문이며, 이를 FT-IR, XRD, SEM 분석으로 확인하였다. PBE/PEG (7 : 3) 블렌드 막이 가장 최적의 기체 분리 성능을 가졌고, 이산화탄소투과도는 170.5 GPU, 이산화탄소/질소 선택 도는 100.3이었다.
        4,000원