PURPOSES : The purpose of this study was to evaluate the performance of a titanium dioxide (TiO2) asphalt surface treatment agent for reducing NOx on the roadside at laboratory and full scales. METHODS : To verify the NOx reduction performance of TiO2 and silicon-based resin-applied surface treatment agents at the lab scale, a bed flow photo reactor test (ISO standard) and a mixed tank photo reactor test designed to apply real-scale construction materials were conducted. Subsequently, the full-scale NOx reduction performance was verified using a full-scale demonstration facility, and the field construction capability of the TiO2 asphalt surface treatment agent was verified through actual road site application. RESULTS : The bed flow photoreactor and mixed tank photoreactor methods showed the same trend in the NOx removal performance. Evaluation of the NOx removal performance of the TiO2 surface treatment agent revealed that the NO removal rate was approximately 13% at the laboratory scale and 15% at full scale. CONCLUSIONS : Through this study, it was determined that the asphalt surface treatment agent applied with TiO2 will have a sufficient NOx reduction effect in an actual road site. In the future, it will be necessary to analyze the continuity of the effect according to traffic volume through continuous monitoring in the field.
The incorporation of vertically aligned carbon nanotubes (VACNTs) between composites plies has been said to enhance the through-thickness strength, and it can also decrease the risk of interply delamination and reduce crack initiation. Thanks to these high mechanical performances, nano-engineered hybrid composites are seen as promising for highly demanding structural reinforcement applications. This paper is part of a study that focuses specifically on the methodology for transferring VACNTs onto a prepreg surface while maintaining their initial vertically aligned morphology. The chosen method involved bonding the VACNTs’ forest through capillary impregnation of the forest by the prepreg’s resin. Key parameters for an effective transfer and to achieve a partial capillary rise of the resin into the VACNTs will be discussed here.
According to NSSC Notice No. 2021-10, safety analysis needs to be introduced in the decommissioning plan. Public and occupational dose analyses should be conducted, specifically for unexpected radiological accidents. Herein, based on the risk matrix and analytic hierarchy process, the method of selecting accident scenarios during the decommissioning of nuclear power plants has been proposed. During decommissioning, the generated spent resin exhibits relatively higher activity than other generated wastes. When accidents occur, the release fraction varies depending on the conditioning method of radioactive waste and type of radioactive nuclides or accidents. Occupational dose analyses for 2 (fire and drop) among 11 accident scenarios have been performed. The radiation doses of the additional exposures caused by the fire and drop accidents are 1.67 and 4.77 mSv, respectively.
In this study, we have fabricated the phenolic resin (PR)/polyacrylonitrile (PAN) blend-derived core-sheath nanostructured carbon nanofibers (CNFs) via one-pot solution electrospinning. The obtained core-sheath nanostructured carbon nanofibers were further treated by mixed salt activation process to develop the activated porous CNFs (CNF-A). Compared to pure PAN-based CNFs, the activated PR/PAN blend with PR 20% (CNF28-A)-derived core-sheath nanostructured CNFs showed enhanced specific capacitance of ~ 223 F g− 1 under a three-electrode configuration. Besides, the assembled symmetric CNF28-A//CNF28-A device possessed a specific capacitance of 76.7 F g− 1 at a current density of 1 A g− 1 and exhibited good stability of 111% after 5,000 galvanostatic charge/discharge (GCD) cycles, which verifies the outstanding long-term cycle stability of the device. Moreover, the fabricated supercapacitor device delivered an energy density of 8.63 Wh kg− 1 at a power density of 450 W kg− 1.
This study was performed to evaluate the separation of Sr, Cs, Ba, La, Ce, and Nd using gas pressurized extraction chromatography (GPEC) with anion exchange resin for the quantitation of Neodymium. GPEC is a micro-scaled column chromatography system that provides a constant flow rate by utilizing nitrogen gas. It is overcome the disadvantages of conventional column chromatography by reducing the volume of elution solvent and shortening the analysis time. Here, we compared the conventional column chromatography and the GPEC method. The whole analysis time was decreased by nine times and radioactive wastes were reduced by five times using the GPEC system. Anion exchange resin 1-X4 (200~400 mesh size) was used. The sample was prepared at a 0.8 M nitric acid in methanol solution. The elution solvent was used at a 0.01 M nitric acid in methanol solution. Finally the eluate was analyzed by ICP-MS to determine the identification and recovery. In this case, we applied the natural isotopes of LREEs (139La, 140Ce, and 144Nd) and high activity nuclides (88Sr, 133Cs, and 138Ba) instead of radioactive isotopes for the preliminary test; as a result, unnecessary radioactive waste was not produced. The recoveries were 93.9%, 105.9%, 91.9%, 47.6%, 35.9%, and 79.9% of Sr, Cs, Ba, La, Ce, and Nd, respectively. The reproducibility of recoveries by GPEC were in the range 2.8%–10.9%.
Pressurized Heavy Water Reactors (PHWR) have stored ion exchange resins, which are used in deuteration, dehydrogenation systems, liquid waste treatment systems, and heavy water cleaning systems, in spent resin storage tanks. The C-14 radioactivity concentration of PHWR spent resin currently stored at the Wolseong Nuclear Power Plant is 4.6×10E+6 Bq/g, which exceeds the limited concentration of low-level radioactive waste. In addition, when all is disposed of, the total radioactivity of C-14, 1.48×10E+15 Bq, exceeds the disposal limit of the first-stage disposal facility, 3.04×10E+14. Therefore, it is currently impossible to dispose of them in Gyeongju intermediate- and low-level disposal facilities. As to dispose of spent resins produced in PHWR, C-14 must be removed from spent resins. This C- 14 removal technology from the spent resin can increase the utilization of Gyeongju intermediate- and low-level disposal facilities, and since C-14 separated from the spent resin can be used as an expensive resource, it is necessary to maximize its economic value by recycling it. The development of C-14 removal technology from the spent resin was carried out under the supervision of Korea Hydro & Nuclear Power in 2003, but there was a limit to the C-14 removal and adsorption technology and process. After that, Sunkwang T&S, Korea Atomic Energy Research Institute, and Ulsan Institute of Science and Technology developed spent resin treatment technology with C-14-containing heavy water for the first and second phases from 2015 to 2019 and from 2019 to the present, respectively. The first study had a limitation of a pilot device with a treatment capacity of 10L per day, and the second study was insufficient in implementing the technology to separate spent resin from the mixture, and it was difficult to install on-site due to the enlarged equipment scale. The technology to be proposed in this paper overcomes the limitations of spent resin mixture separation and equipment size, which are the disadvantages of the existing technology. In addition, since 14CO2 with high concentration is stored in liquid form in the storage tank, only the necessary amount of C-14 radioactive isotope can be extracted from the storage tank and be used in necessary industrial fields such as labeling compound production. Therefore, when the facility proposed in this paper is applied for treating mixtures in spent resin tanks of PHWR, it is expected to secure field applicability and safety, and to reflect the various needs of consumers of labeled compound operators utilizing C-14.
The intermediate level spent resins waste generated from water purification for the the moderator and primary heat transport system during operaioin of heavy water reactor (HWR). Especially, moderator resins contain high level activity largely because of their C-14 content. So spent resins are considered as a problematirc solid waste and require special treatment to meet the waste acceptance criteria for a disposal site. Various methods have been studied for the treatment of spent resins which include thermal, destructive, and stripping methods. In the case of solidification methods, cement, bitument or organic polymers were suggested. In the 1990s, acid stripping using nitric acid and thermal treatment methods were actively investigated in Canada to remove C-14 nuclide from waste resin. In Japan, thermal distructive method was studied in the 1990s. Since 2005, KAERI developed acid stripping method using phosphate salt. However, acid stripping method are not suitable due to large amounts of 2nd waste containing acid solution with various nuclides. To solve this probelm, KAERI has been suggested the microwave treatment method for C-14 selective removal from waste resin in the 2010s. Pilot scale demonstration tests using radioactive waste resin generated from Wolsung unit 1 and unit 2 were successfully conducted and 95% of C-14 was selectively removed from the radioactive waste resin. In recent years, price of C-14 source is dramatically increased due to market growth of C-14 utilization and exclusive supply chain depending on China and Russia. High purity of C-14 were captured in HWR waste resin. Interest of C-14 recovery research from HWR waste resin is currently increased in Canada. In this study, microwave method is suggested to treat HWR waste resin with C-14 recovery process. Additionally, status of waste resin management and research trends of HWR waste resin treatment are introduced.
Mixed-bed ion exchange resin consist of anion exchange resin and cation exchange resin is used to treat liquid radioactive waste in nuclear power plants. C-14 from heavy water reactors (HWR) is adsorbed on the anion exchange resin and is considered intermediate-level radioactive waste. The total amount of radioactivity of C-14 in spent ion exchange resin exceeds the activity limits for the disposal facility. Therefore, it is necessary to reduce the radioactivity through pre-treatment. There are thermal and non-thermal methods for the treatment of spent ion exchange resin. However, destructive methods have the problem of emitting off-gas containing radionuclides. To solve this challenge, various methods have been developed such as acid stripping, PLO process, activity stripping, thermal treatment and others. In this study, spent ion exchange resin (spent resin) was treated using microwave. The reaction characteristics of the resin to microwave were used to selectively remove the C-14 on the functional groups. Simulated spent anion exchange resin and spent resin from Wolseong NPP were treated with the microwave method, and the desorption rate was over 95%. An integrated process system of 1 kg/batch was built to produce operating data. After the operation of the process, characterization and evaluation of post-treatment for condensate water and adsorbent used in the process were performed. When the process system was applied to treat simulated spent resin and real spent resin, both showed a desorption rated of more than 97%. It means that the C-14 was successfully removed from the radioactive spent resin.
A radiation shielding resin with thermal stability and high radiation shielding effect has been developed for the neutron shielding resin filled in the shielding shell of dry storage/transport cask for spent nuclear fuel. Among the most commercially available neutron shielding resins, epoxy and aluminum hydroxide boron carbide are used. But in case of the resin, hydrogen content enhances the neutron shielding effect through optimization of aluminum hydroxide, zinc borate, boron carbide, and flame retardant. We developed a radiation shielding material that can increase the boron content and have thermal stability. Flame retardancy was evaluated for thermal stability, and neutron shielding evaluation was conducted in a research reactor to prove the shielding effect. As a result of the UL94 vertical burning test, a grade of V-0 was received. Therefore, it was confirmed that it had flame retardancy. According to an experiment to measure the shielding rate of the resin against neutron rays using NRF (Neutron Radiography Facility), a shielding rate of 91.54% was confirmed for the existing resin composition and a shielding rate of 96.30% for the developed resin composition. A 40 M SANS (40 M Small Angle Neutron Scattering Instrument) neutron shielding rate test was performed. Assuming aging conditions (6 hours, 180 degrees), the shielding rate was analyzed after heating. As a result of the experiment, the developed products with 99.8740% and 99.9644% showed the same or higher performance.
Poor mechanical properties and bacterial infection are the main problems faced by dental restorative resins in clinical use. In this study, graphene quantum dots (GQDs) grafted with imidazole groups and mesoporous silica (MSN) are co-filled in a dental resin to impart excellent antimicrobial activity and mechanical properties to the dental resin. The higher specific surface area of GQDs and MSN results in an increased contact area with the resin matrix, which enhances the strength of the dental composite resin. The introduction of GQDs significantly improves the antimicrobial activity of the resin. The inhibition efficiency of the composite resin against Streptococcus mutans reached 99.9% with the addition of GQDs at only 0.2 wt.%. When MSN and GQDs are co-filled, MSN interferes with the release of GQDs, thus reducing the antimicrobial activity of the dental resin but improving the cyto-compatibility. By reasonably adjusting the amount of GQDs and MSN, the dental composite resin can exhibit excellent antimicrobial properties, mechanical properties and cyto-compatibility at the same time.
We established pretreatment method of solidified cement ion-exchange resin samples generated before 2003 in nuclear power plants for measurement of non-volatile radionuclide activity. A microwave digestion system (MDS) with mixed acid (HCl-HNO3-HF-H2O2) was used to dissolve cement and to desorb non-volatile elements such as Ce, Co, Cs, Fe, Nb, Ni, Re, Sr and U from mixed ion-exchange resin. The content of Ce, Co, Fe, Nb, Ni, Re, Sr, U and Cs after pretreatment of cement plus mixed ion-exchange resin was measured by ICP-AES and ICP-MS, respectively. As iron and strontium are also present in cement, their content after dissolving a certain amount of cement was measured by ICP-AES. All elements except Nb were quantitatively recovered. Especially since the Nb recovery was low at 72.0±2.5%, the MDS following addition of the mixed acid to the resin was operated once more for desorbing Nb from it. Finally the recovery of Nb was over 95%. This sample pretreatment method will be applied to solidified cement ion-exchange resin samples generated in nuclear power plants for assessment of radionuclide inventory.
Cardiovascular disease remains as one of the most common causes of high morbidity and mortality worldwide, despite remarkable medical advances in recent decades. Non-invasive techniques play a preeminent role in prevention of cardiovascular disease by diagnosing it at an early stage and guiding optimal patient management. Nuclear imaging is one of the most powerful means available for noninvasive diagnosis and management of poorly perfused myocardial region resulting from the cardiovascular disease. Several radionuclides are available for monitoring blood flow to cardiac tissue. The most validated radionuclides for these measurements are 13N, 15O, 99mTc, 201Tl and 82Rb. Each of 13N, 15O and 201Tl require the presence of an on-site cyclotron, whereas, 82Rb and 99mTc require only a generator. Rubidium (Rb) is an alkali metal ion that acts biologically like potassium and accumulates in cardiac muscle tissue. Rb has a rapid blood clearance profile which allows the use of 82Rb. It also has an ultra-short physical half-life of 75 sec for non-invasive evaluation of regional cardiac blood flow. There are several advantages of 82Rb over other radionuclides. Having a short half-life significantly reduces the radiation dose to the patient. In addition, 82Rb is a positron emitter, which gives the full advantages of PET such as image quantification with superior sensitivity. Several reports have shown superior diagnostic performances of 82Rb-PET over conventional 99mTc-SPECT. 82Rb can be produced from a generator system by the decay of its 25.6-day half-life parent 82Sr. However, the 82Sr parent is difficult to prepare. In routine generator production, certain purity is required to meet the specification of the product. Since there has been no the use of 82Rb radionuclide for research or medical purpose in Korea, we have plans to produce 82Sr with certain purity and develop a 82Sr/82Rb generator system. These studies can also be applied to remove radioactive Sr from radioactive waste waters. Because ion exchange resin, used for purification of 82Sr from impurities, is also utilized to trap radioactive Sr2+ ions from radioactive waste water. After Fukushima Daiichi nuclear accident, interest in the treatment of radioactive waste water has surged. As one of main fission products of nuclear reactor, 90Sr has been regarded as a hazardous radionuclide with half-life of about 29 years. Therefore, the investigation on ion exchange resin is important for removal of 90Sr from radioactive waste water. Here, we optimized 82Sr purification method using ion exchange resin to establish the most suitable procedure.
This study presents a rapid and quantitative radiochemical separation method for Nb isotopes in radioactive waste samples from the nuclear power plant with anion exchange resin after Fe coprecipitation. After radionuclides were leached from the radioactive waste samples with concentrated HCl and HNO3, the Nb isotopes were coprecipitated with Fe after filtering the leaching solution with 0.45 micron HA filter, while the Sr, Tc and Ni isotopes were in the solution. The Nb isotopes were separated in HCl medium with anion exchange resin. The purified Nb isotopes were measured using a low level liquid scintillation counter after installing quenching curve with standard Nb-94 isotopes. The separation method for Nb isotopes investigated in this study was applied to neutron dosimeter samples from the nuclear power plant after validating the Nb activity concentration with gamma spectrometry system.
HANARO, a multi-purpose research reactor, uses a reflector as heavy water to obtain high neutron flux. Therefore, two ion exchangers were installed to manage the heavy water quality of the reflector system. The operator of HANARO manages it according to the limit value (Conductivity: less than 0.5 mS/m, pH: 5.5~6.5), and if the limit value is not satisfied, the resin must be replaced. The reflector system is in the enclosed structure and it is designed to delay the release of tritium to the outside. Tritium is produced by a nuclear reaction between neutrons and deuterium. Tritium is inhaled into the body in the form of water or vapor, which is likely to cause internal exposure problem. In addition, since tritium spreads to other regions, thorough management is required. Therefore, HANARO measures and manages tritium in Rx and RCI using the bubbler collection method. In this paper, the change in the behavior of tritium due to the replacement of the reflector ion exchanger resin was analyzed. Due to the increase in conductivity of the reflector, the ion exchanger resin was replaced on March 3, 2022. Therefore, the concentration of tritium was measured to be about 5 times higher than usual. It did not exceed the emission limit, and the concentration values of tritium is stably managed by constant monitoring and analysis.
The liquid radioactive waste system of nuclear power plants treats radioactive contaminated wastes generated during the Anticipated Operational Occurrence (AOO) and normal operation using filters, ion exchange resins, centrifuges, etc. When the contaminated waste liquid is transferred to an ion exchanger filled with cation exchange resin and anion exchange resin, nuclides such as Co and Cs are removed and purified. The lifespan and replacement time of the ion exchange resin are determined by performing a performance test on the sample collected from the rear end of the ion exchanger, and waste ion exchange resin is periodically generated in nuclear power plants. In the general industry, most waste resins at the end of their lifespan are incinerated in accordance with related laws, but waste resins generated from nuclear power plants are disposed of by clearance or stored in a HIC (High Integrity Container). Plasma torch melting technology can reduce the volume of waste by using high-temperature heat (about 1,600 degrees) generated from the torch due to an electric arc phenomenon such as lightning, and secure stability suitable for disposal. Plasma torch melting technology will be used to check thermal decomposition, melting, exhaust gas characteristics, and volume reduction at high temperatures, and to ensure disposal safety. Through this research, it is expected that the stable treatment and disposal of waste resins generated from nuclear power plants will be possible.
This study described a way of developing a resin for deviceizing quantum dots. Furthermore, the following conclusions were obtained by developing light curable syrup and UV curable syrup. First, The viscosity of the mixed resin decreased as the content of the diluent increased, and the value was bewteen 4,310 and 1,473cps. Second, haze was measured by using NDH 5000, and all of the synthesized syrups were obtained a haze value of 1% or less with a transmittance of 95% or more in the visible light region. Third, the viscosity of the mixed resin decreased as the temperature increased, and at this point, the viscosity showed a value of 4,219 to 1,128cps. Lastly, As a result of measuring the viscosity of the resin before and after mixing the quantum dot nanoparticles, it appears to be little change.
Abstract In the present study, the effect of nickel nitrate addition as a catalytic precursor for the in situ formation of Ni nanoparticles during the heating process has been investigated on the modification of microstructure and graphitization of amorphous carbon resulting from pyrolysis of phenolic resin. For this purpose, the prepared resin samples were cured in carbon substrate with and without additives at temperatures of 800, 1000, and 1250 °C. XRD, FESEM, and TEM studies were performed to investigate the phase and microstructural changes in the samples during the heating process. In addition to phase and microstructural studies, thermodynamic calculations of the reactions performed for the in situ formation of nickel nanoparticles and their effective factors during the curing process were performed. The results indicated that nickel nitrate is transformed to nickel nanoparticles of different sizes during the reduction process in a reduced atmosphere. The in situ formation of nickel nanoparticles and its catalytic effect led to the graphitization of carbon resulting from the pyrolysis of phenolic resin at a temperature of 800 °C and above. By increasing temperature, the morphology of the formed graphite changed and hollow carbon nanotubes, carbon cells, and onion skin carbon were formed in the microstructure. It was also observed that by increasing the temperature and the amount of additive, carbon nanotubes and their size are increased. A noteworthy point from thermodynamic calculations during the formation of nickel nanoparticles was that the nickel nanoparticles themselves acted as accelerators of nickel oxide reduction reactions and the formation of nickel nanoparticles. This increases the amount of amorphous carbon graphitization resulting from the pyrolysis of phenolic resin which leads to the formation of more carbon nanotubes at higher temperatures.
The dose was evaluated for the workers transporting the spent resin drums from a spent resin mixture treatment facility. The treatment technology of spent resin mixture waste based on microwave was developed to compensate for the shortcoming of the existing one. The mechanism of the facility for the treatment is divided into separation, desorption, condensation and adsorption process. The treated spent resin that has passed through the microwave reactor flows into the spent resin storage tank. As the treatment time elapses, if spent resin accumulates in the spent resin storage tank, it is moved to the drum of the volume of 200 L. The drum must be moved by the worker, in which case radiation exposure to the drum transport worker occurs. It requires the dose evaluation for drum transport workers in terms of radiation safety. Dose evaluation was performed in consideration of the change in the composition ratio and weight of the spent resin mixture, where the working time for transportation was considered from 10 to 120 minutes in 10-minute increment. In the case of 100 kg of the spent resin mixture, the dose range was derived as 4.62×10−3 – 5.90×10−2 mSv for the 100 kg of spent resin, 4.72×10−3– 5.58×10−2 mSv for the 80 kg of spent resin and 20 kg of zeolite and activated carbon, and 5.38×10−3 – 6.32×10−2 mSv for the 60 kg of spent resin and 40 kg of zeolite and activated carbon. In the case of 150 kg of the spent resin mixture, the dose range was derived as 6.83×10−3 – 8.20×10−2 mSv for the 150 kg of spent resin, 7.13×10−3 – 8.22×10−2 mSv for the 120 kg of spent resin and 30 kg of zeolite and activated carbon, and 8.28×10−3 – 8.86×10−2 mSv for the 90 kg of spent resin and 60 kg of zeolite and activated carbon. The estimated maximum doses for each weight (100 kg and 150 kg of mixture) were confirmed to be 3.16×10−1% and 4.43×10−1% of the annual average dose limit of 20 mSv for radiation workers.
Inorganic and organic ion exchange materials were generally applied to liquid processes in nuclear reactor. In the case of heavy-water reactor (HWR), zeolite, active carbon, anion resin, and cation resin were used to treat liquid processes such as reactor primary coolant cleanup and liquid radioactive waste management system. Then, used ion exchangers were stored at storage tanks. Various kinds of nuclides were adsorbed in ion exchange materials. Especially, C-14, long half-life nuclide, was highly concentrated in anion resin, and waste resin was treated as intermediated level radioactive waste (ILW). Thermal and non-thermal methods such as pyrolysis, incineration, catalytic extraction, acid digestion, and wet oxidation have been studied for treating spent resin. However, destructive methods are not suitable due to massive off gas waste containing radioactive species. To solve this problem, various kinds of processes were developed such as acid stripping, PLO process, activity stripping, thermal treatment, and etc. In this study, microwave method is suggested to treat HWR waste resin. C-14 nuclide was selectively removed from waste resin without decomposition of main structure in waste resin. Radioactive waste resin generated from Wolsung HWR unit 1 and unit 2 was treated using microwave method and 95% of C-14 was successfully removed from the radioactive waste resin.