검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 456

        381.
        2002.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SPS(Spark Plasma Sintering ) is known to be an excellent sintering method for porous materials. In the present work an attempt has been made of fabricating porous 316L Stainless steel with good mechanical properties by using controlled SPS process Porosity was 21%~53% at sintering temperature of ~100 The limit of porosity with available mechanical strength was 30% at given experimental conditions. Porosity can be controlled by manipulating the intial height of the compact by means of the supporter and punch length. The applied pressure can be exerted entirely upon the supporter, giving no influence on the specimen. The specimen is then able to be sintered pressurelessly. In this case porosity could be controlled from 38 to 45% with good mechanical strength at sintering temperature of 90. As the holding time increased, neck between the particles grew progressively, but shrinkage of the specimen did not occur, implying that the porosity remained constant during the whole sintering process.
        4,200원
        385.
        2001.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A bulk porous composite with plantinum nano-dispersion was synthesized in air atmosphere through the combination of several in situ reactions, including the pyrolysis of . A mixture of (dolomite), , and LiF (0.5 wt%, as an additive) was cold isostatically pressed at 200 MPa and sintered at for 2 h. The porous composite ( : Pt=99 : 1 in volume) had a uniformly open-porous structure (porosity: 56%) with three-dimensional (3-D) network and a narrow pore-size distribution, similarly to the porous composites reported before. Catalytic Properties (viz., NO direct decomposition and NO reduction by ) of the composite were investigated up to . In the absence of oxygen, the NO conversion rate reached ~52% for the direct decomposition and ~100% for the reduction by , respectively. The results suggest the possibility of the porous composite as a multifunctional filter, i.e., simultaneous hot gas-filtering and in one component.
        4,000원
        386.
        2001.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous carbons have been prepared from different parts of banana stems using two different routes, viz., by pyrolysing the mass at different temperatures as well as by treating the dried mass with chemicals followed by pyrolysis. The pyrolysis behaviour of all these materials has been studied up to 1000℃. Samples treated with acids exhibit more increase in surface area as compared to those treated with alkalies or salts. Analysis of BET surface area shows that the carbon prepared at low temperature shows mixed porosity, i.e., micro and mesopores. Samples heated to high temperature above 700℃ show decrease in macroporosity and increase in microporosity. Liquid adsorption studies have been made using methylene blue and heavy oil. The activated carbons so prepared exhibit higher oil adsorption mainly in the macro and mesopores.
        4,000원
        390.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 인공 진피와 조직공학용 scaffold로 이용하기 위해 다공성 membrane로서 gelatin-based sponge의 효율성을 연구하였다. 불용성의 다공성 membrane은 1-ethyl-(3-3dimethylaminopropyl)carbodiimide(EDC)로 가교하여 제조하였다. Fourier-transformed infrared (FT-IR) spectroscopy, scanning electron microscopy(SEM) 그리고 Instron analysis로 다공성 membrane의 특성을 조사하였다. 다공성 membrane은 용적당 큰 표면적을 제공하는 micro porous한 구조를 가지고 있다. Gelatin/hyaluronic acid (HA) membrane의 공경크기는 40~200μm이다. HA의 첨가는 다공성 membrane의 기계적 강도와 세포부착능력에 영향을 미쳤다. Gelatin/HA 다공성 membrane의 압축강도는 collagen과 비슷하며, 세포배양과 인공진피 transplantation에 있어서의 충분한 기계적 강도를 가지고 있다. Fibroblasts를 함유한 진피기질을 제조하기 위해 직경 8mm의 다공성 membran에 4×10(sup)5cells/membrane의 세포밀도로 fibroblast를 배양하였다. GH91 porous membrane에서의 fibroblast 부착성은 GH55 porous membrane에서보다 우수하였다. 삼차원 구조의 gelatin/HA membrane matrix에서의 fibroblast의 배양은 생체내 조건과 유사한 생리적 환경을 제공하였다.
        4,000원
        391.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous carbon from charcoal filled polypropylene composites were prepared and their mechanical properties were evaluated. In preparing the composites, crosslinking agent (sodium benzonate) were used in order to improve the bonding force between matrix and fillers. In this study, the effects of charcoal powder and sodium benzonate concentration on the mechanical properties and interface phenomena on the composites were evaluated. The mechanical properties of composites increased progressively with the decrease of filler loading. In the case of addition of the crosslinking agent into the composite, the mechanical properties were increased and showed maximum value at the 3 wt% concentration of sodium benzonate. According to the result of the TGA, the weight loss of composite according to crosslinking agent was not observed and initial thermal degradation temperature of composite reinforced charcoal was located at 390℃.
        3,000원
        392.
        2000.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Performance of direct methanol fuel cell using high porous active carbon as an uncatalysed diffusion layer in anode (composite electrode) has been evaluated. Effects of porous active carbon in anode were investigated by galvanostatic method and Fourier Transform Infrared spectroscopy. The single cell was operated with 2.5 M methanol at temperature of 80-120℃ and showed performance of 210-510 mA/cm2 at 0.4V. By replacing conventional electrode with composite electrode, the increment of 290 mA/cm2 in current density was obtained at 90℃and 0.4V. The potential decay of the single cell was about 14.5% for 20 days operation.
        3,000원
        396.
        1999.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Al(OH)3와 비정질 SiO2를 출발원료로 사용하여 반응소결을 통한 다공성 뮬라이트를 제조하였다. Al(OH)3와 SiO2의 몰비를 뮬라이트의 화학양론적 조성과 실리카와 얄루미나가 많은 조성으로 변화시키고, 각 조성에 AlF3를 0, 1, 5, 10wt% 첨가하여 뮬라이트의 생성에 미치는 조성과 첨가제의 영향을 살펴보았다. 첨가한 AlF3의 양이 많아질수록 낮은 온도에서 뮬라이트가 생성됨을 보였고, 첨가된 AlF3의 양이 5wt%인 경우, 화학량론적 뮬라이트 조성에서 율라이트가 1250˚C에서부터 생성되기 시작하였으 며 1300˚C 이상 열처리한 경우 충분히 발달한 침상형의 다공성 뮬라이트가 합성되었다. AlF3의 양이 5wt% 이상 첨가한 경우 열 처리 온도의 영향은 크게 나타나지 않았으며, 소성체의 수축도 거의 일어냐지 않았다.
        4,000원
        400.
        1998.06 구독 인증기관·개인회원 무료
        Research activities of Russian Medical Engineering Center and Institute of Medical Materials of Shape Memory Alloys and Implants are presented as follows: The direction of elaboration of porous shape memory alloys for medicine. Medical and technical requirements and physical and mechanical criteria of porous shape memory implants elaboration. Basic laws of heat-, stress- and strain-induced changes of mechanical properties, shape memory effect and superelasticity in porous TiNi-based alloys. Methods of regulation of shape memory effect parameters in porous alloys and methods for controlling the regulation-induced changes of physical and mechanical properties. Original technologies of elaboration of porous alloys In various fields of medicine. Arrangement of serial production of shape memory porous implants and examples of their medical use.