검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 222

        41.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The logistic roads for freight transport along to the new port of Busan have been suffered by the rapid weather changes including high temperature and torrential rain. As a result, the roads require annual repair, which have been distressed seriously by the heavy logistic and environmental loads. Therefore, we need to identify the cause of the road pavement distresses and find a proper design method to minimize the pavement distress in order to prohibit the problem aggravated. METHODS : The damaged conditions of the logistic roads were investigated on-site. In addition, applied pavement designs, real traffic volumes, and historical climatic information were intensively collected for this project. With the investigated and collected data Korean pavement design program (KPRP) was implemented to analyzed the causes of the damaged roads and conceive the pavement design draft optimized for the roads. RESULTS : According to the investigation and KPRP analysis, the traffic volume to transport freights impacts significantly the pavement distress, so that a higher PG grade binder type should be used, for which polymer modified asphalt (PMA) binders are recommended. Moreover, its pavement thickness should be increased to secure load bearing capacity, but thickening the pavement has been discouraged due to difficulties induced by the road-sectional change, especially road-height change. CONCLUSIONS : In conclusion, 5cm PMA overlay is suggested for the normal-scale maintenance, and 7cm PMA overlay for large-scale maintenance. Besides these, the application of Polymer-modified Stone Matrix Asphalt (PSMA) using PG76-22 binder would be the best preventive maintenance method, which has been well know as having higher fatigue resistant performance than general PMA. However, if we use PSMA, quality control should be very cautious since PSMA can be very susceptible premature distress if its production and construction are improperly proceeded.
        4,000원
        53.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The concentration of TVOCs in public transportation in the spring and summer of 2018 was measured. Public transportation measured the concentration of TVOCs on six subway lines in Seoul, two lines of high-speed trains, and intercity buses. The measurements were taken during the operation of each route of the surveyed public transportation from the origin to the destination. In addition, the measurement time was divided into the congestion time and the non-congestion time. In the spring of 2018, in the order of subway, train A, train B, and intercity buses, TVOC concentrations during the congestion time zone were 205.9 μg/m3, 121.3 μg/m3, 171.1 μg/m3, and 88.7 μg/m3, respectively. During the non-congestion time zone, the concentrations were 177.2 μg/m3, 108.8 μg/ m3, 118.2 μg/m3, and 126.1 μg/m3, respectively. In the summer of 2018, TVOC concentrations in the order of the aforementioned transportation modes during the congestion time zone were 169.8 μg/m3, 175.8 μg/m3, 78.0 μg/ m3, and 185.3 μg/m3, respectively. During the non-congestion time zone, the concentrations were 210.8 μg/m3, 116.1 μg/m3, and 162.7 μg/m3, respectively. An analysis of BTEX concentration among VOCs in public transportation in descending order were followed by toluene > xylene > ethylbenzene > benzene. Toluene, which has the highest concentration among the BTEX compounds, was found to be 12.86 μg/m3 to 91.41 μg/m3 during spring congestion time and 7.10 μg/m3 to 39.52 μg/m3 during non-congestion time. During the summer congestion time, the concentration was 6.68 μg/m3 to 249.48 μg/m3 and 13.23 μg/m3 to 214.5 μg/m3 during the non-congestion time. The concentration of benzene was mostly less than 5 μg/m3 in transportation. Particularly in the case of toluene, the concentration is significantly higher than that of other VOCs. Accordingly, further study of toluene exposure hazards will be needed. Five percent of the surveyed TVOC concentrations exceeded the recommended indoor air quality standard of 500 μg/m3, and all 13 cases representing this percentage were found in the subway. In addition, nine of the 13 cases that exceeded the recommended standard were measured during congestion time. Therefore, VOCs in public transportation vehicles during congestion time need to be managed.
        4,000원
        59.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, the installation of drowsy rest areas and accidents are analyzed. The factors that affected the accidents caused by drowsy drivers in rest areas are analyzed to improve the safety of rest areas. METHODS : By comparing and analyzing the installation status of the rest areas for drowsy drivers, the accident status were analyzed. The logistic regression model was used to analyze the factors that affect accidents in the drowsy rest area. RESULTS : Most rest areas were installed below the installation criteria. Several accidents occurred when the vehicle entered the drowsy rest area. These rest areas had a short entry ramp, and no safety facilities were installed. The logistic regression model showed that the risk of an accident is lowered when the deceleration lane is longer than 215 m. Additionally, the risk of an accident is lowered when the rest area is installed in the straight section or the curve section, wherein the curve radius is greater than 2 km. CONCLUSIONS : In this study, we evaluated the installation status of the rest areas for drowsy drivers by comparing installation elements. Most rest areas for drowsy drivers were installed at different lengths of the ramp. Some of these were installed on the slope or curved sections of the road. We analyzed the accident status and developed an accident modal using the logistic regression model to identify the factors that affect accidents. It will be necessary to analyze accidents in drowsy rest areas continuously to improve safety for drowsy drivers.
        4,000원
        1 2 3 4 5