Experimental findings pertaining to the frost resistance of calcium sulfoaluminate (CSA) and amorphous calcium aluminate (ACA) cement-based repair mortars incorporated with anhydrite gypsum are described herein. To prepare the mortars, CSA and/or ACA cements were used as binders, and the water–binder ratio was fixed at 0.57. The compressive and bond strengths, chloride-ion penetration resistance, and scaling resistance of the mortars were measured. Based on the ASTM C666 method, the resistance to both frost action and multi-deterioration of chloride and frost attacks on the mortars were experimentally examined. Calcium aluminate-based binders effectively enhanced the compressive and bond strengths of the mortars owing to the formation of C2AH8 and Ye’elimite hydrates. Furthermore, replacing 25% ACA with OPC yielded excellent resistance to both frost attack and multi-deterioration of chloride and frost attacks. Replacing ACA at an appropriate level as a binder effectively improves the durability of concrete road facilities in winter.
In densely populated urban areas, reinforced concrete residential buildings with an open first floor and closed upper floors are preferred to meet user demands, resulting in significant vertical stiffness irregularities. These vertical stiffness irregularities promote the development of a soft-story mechanism, leading to concentrated damage on the first floor during seismic events. To mitigate seismic damage caused by the soft-story mechanism, stiffness-based retrofit strategies are favored, and it is crucial to determine an economically optimal level of retrofitting. This study aims to establish optimal seismic retrofit strategies by evaluating the seismic losses of buildings before and after stiffness-based retrofitting. An equivalent single-degree-of-freedom model is established to describe the seismic response of a multi-degree-of-freedom model, allowing for seismic demand analysis. By convolving the seismic loss function with the hazard curve, the annual expected loss (EAL) of the building is calculated to assess the economic losses. The results show that stiffness-based retrofitting increases first-story lateral stiffness by 20-40%, enhancing structural seismic performance, but also results in a rise in EAL compared to the as-built state, indicating lower cost-effectiveness from an economic perspective. The research concludes that retrofit options that increase first-story lateral stiffness by at least 60% are more appropriate for reducing financial losses.
압축하중을 받는 콘크리트 충전 강관(CFT) 부재는 강관에 의한 심부구속효과로 인해 내부 콘크리트의 취성이 감소하며, 이는 CFT 부재의 압축강도를 크게 증가시킨다. 본 연구에서는 강관을 퍼포본드 리브 전단연결재로 보강하여 콘크리트의 심부구속효과를 향상 시키고, 유한요소해석 모델에서 재료 특성 및 경계 조건을 설정하여 이를 평가하였다. 이때, 강재와 콘크리트 사이의 계면 거동을 보 다 정확하게 모사하기 위해 cohesive element를 사용하였으며, 이를 통해 강관과 콘크리트 간 하중 전달을 모델링하였다. 전단연결재 로 인한 심부구속효과 향상을 검증하기 위해 퍼포본드 리브 전단연결재가 적용된 CFT 부재의 축소 모델에 대한 실험 및 유한요소해 석을 수행하였고, 전단연결재가 없는 CFT 부재와의 비교를 통해 성능 향상이 확인되었다. 퍼포본드 리브 전단연결재는 홀의 지름 및 개수를 변화시키며 파라미터 스터디를 수행하였고, 이로 인해 전단연결재의 전단저항력 변화가 심부구속효과에 미치는 영향에 대해 평가하였다. 전단연결재의 전단저항력 변화에 따른 CFT 부재의 구조적 성능 차이를 분석하면서, 실험과 유한요소해석의 일치성을 검토하였다.
본 연구에서는 방사선조사 유발 체적팽창(RIVE)이 원자력 발전소의 콘크리트 생체 차폐벽의 구조 건전성에 미치는 영향을 확인하 고자 하였다. 이를 위해 원자로 압력용기 감시 프로그램의 데이터를 사용하여 콘크리트 생체 차폐벽의 누적 중성자 조사 수준을 추정 하는 방법으로 원자로 압력용기(RPV) 내부 표면에서 차폐벽 외부까지의 누적 조사량의 감쇠를 계산하는 과정을 설명하고 콘크리트 의 방사선 조사 유발 체적팽창에 대한 모델을 제시하였다. 콘크리트 생체 차폐벽의 응력 상태는 온도의 영향을 받을 수 있기 때문에 방사선조사유발 체적팽창 효과와 더불어 운전 중 차폐벽의 온도 상승 효과도 고려하였다. 콘크리트 생체 차폐벽 구조에 대한 방사선 조사 유발 체적팽창과 온도의 영향을 평가한 결과, 차폐벽의 안쪽 표면 부근 영역의 압축 응력이 국부적으로 콘크리트의 압축 강도 한 계를 초과할 수 있으며, 외부 영역의 인장 응력은 균열을 유발할 가능성이 있음을 확인할 수 있었다. 또한 중성자 누적 조사량이 증가 하면 응력도 증가하는 경향을 보였다. 온도도 차폐벽의 응력 상태에 영향을 미치지만, 그 영향은 방사선조사 유발 체적팽창의 효과에 비해 그다지 크지 않았다. 향후 추가 연구를 통해 차폐구조물의 보다 현실적인 기하학적 구조, 중성자 조사량 분포, 그리고 차폐벽 내 부 보강 철근 요소 등을 포함하는 상세 모델을 바탕으로 콘크리트 생체 차폐벽에 설치되는 압력용기 지지 구조물 및 앵커 시스템에 대 한 영향 평가를 수행할 계획이다.
본 연구에서는 중속 충돌하중을 받는 RC 벽체의 배면파쇄 영역을 모사할 수 있는 모델링 기법을 범용 유한요소해석 프로그램인 LS-DYNA을 통해 제안하였다. 충돌해석에 주로 사용되는 요소 삭제 기능이 발사체의 하중 전달에 영향을 미치고 이로 인해 배면파 쇄 영역이 과소평가 된다고 판단하였다. 따라서 충돌 위치 주변에는 요소 삭제 기능을 사용하지 않는 모델링 기법을 제안하였다. 제안 된 기법을 적용한 해석이 실험 결과를 근접하게 모사함에 따라, 제안한 기법이 연속적인 충돌에너지의 전달에 효과적임을 확인하였 다. 추가적으로 다른 충돌 조건에 대해 해당 기법의 적용성 검토를 진행한 결과, 대칭 조건을 사용하지 않고, 철근의 결속을 함께 모사 할 경우 RC 벽체의 파괴 거동을 더욱 근접하게 모사할 수 있음을 확인하였다.
The purpose of this study is to experimentally analyze the seismic performance of a vertical irregular beam-column specimen reinforced with RBS (Replaceable Steel Brace System), a steel brace system. To evaluate the seismic performance of RBS, three specimens were manufactured and subjected to cycle loading tests. The stiffness ratio of beam-upper column of the non-retrofitted specimen was 1.2, and those of the two retrofitted specimens were 1.2 and 0.84. The stiffness ratio of the beam-lower column of all specimens was 0.36. And the stiffness ratio were used for variable. As a result of the experiment, the specimen retrofitted with RBS showed improved maximum load, effective stiffness and energy dissipation capacity compared to the non-retrofitted specimen with the same beam-upper column stiffness ratio. The specimen with 0.84 beam-upper column stiffness ratio showed improved performance compared to the specimen with 1.2 stiffness ratio.
이 연구는 상변화 물질(PCM)을 함침시킨 경량 골재(LWA)를 활용한 고강도 콘크리트의 개발에 중점을 두고 있다. 상변화 온도가 5.5°C인 Tetradecane을 PCM으로 사용하였으며, LWA(Expended shale, ES)가 PCM 운반체 역할을 수행하였다. ES의 공극 은 진공 함침 기법을 통해 PCM으로 충전하였고, PCM-ES 복합체의 누출을 방지하기 위해 이중 코팅 처리가 추가로 이루어졌다. PCM-ES에 대한 시차주사열량계 시험 결과, 발열 및 흡열 엔탈피가 각각 96 J/g와 97 J/g로 나타났다. 콘크리트 혼합물은 밀도 최적 화를 위해 마이크로 실리카(MS), 실리카 분말(S), 실리카 모래를 사용하여 설계되었으며, PCM-ES는 실리카 모래의 25% 및 50%를 체 적 기준으로 대체하였다. 기계적 강도 테스트 결과, PCM-ES 콘크리트는 25% 및 50% 대체 시 각각 56.39 MPa와 45.94 MPa의 압 축 강도를 기록하였다. 열 성능 테스트는 다양한 주변 온도 조건에서 PCM-ES 콘크리트의 거동을 확인하기 위해 수행되었다. PCM-ES 콘크리트는 15°C에서 −5°C까지의 세 가지 열 사이클 시험을 진행하였으며, 이 과정에서 내부 온도가 지속적으로 모니터링 되었다. 결과적으로 주변 온도가 −5°C로 떨어지더라도 콘크리트 내부 온도는 0°C 이상을 유지하는 것으로 나타났다.
Tunnel fires have significant social and economic impacts, causing extensive damage to concrete and steel reinforcements at high temperatures. Despite international advancements in fire-resistant designs, the safety measures for tunnel fires in South Korea remain insufficient. This study aimed to evaluate the fire resistance of fiber-reinforced concrete incorporating fire-resistant fibers with a focus on preventing spalling and enhancing structural safety. These findings are expected to contribute to the development of fire-resistant tunnel-design standards. Concrete mixtures with compressive strengths of 27 MPa were prepared according to highway construction material standards. Fiberreinforced concrete samples were produced with fire-resistant fiber dosages of 0.0, 0.6, 0.8, and 1.0 kg per cubic meter. Fresh concrete tests, including air content (KS F 2421) and slump (KS F 2402) tests, were conducted along with compressive strength tests (KS F 2405) on the hardened concrete. The fire resistance was assessed using an electric furnace to simulate the fire curve conditions specified in the Road Tunnel Fire Safety Guidelines based on KS F 2257. Increasing the fiber content led to a slight reduction in slump, likely owing to fiber agglomeration, with minimal effect on workability within the tested range. The air content exhibited negligible variation, indicating that there was no major impact on the air-void system. The compressive strength before the fire resistance test fluctuated but consistently met the design target of 27 MPa. The compressive strength after the fire resistance test across all samples decreased to approximately 2.0 MPa. The fiber-reinforced concrete exhibited reduced internal temperatures compared to the control, which was attributed to heat transfer disruption and the formation of micropores by the fibers. In this study, fiber-reinforced concrete demonstrated improved thermal resistance under fire conditions with minimal impact on the workability and air content within the tested range. Although the compressive strength before the fire resistance test remained adequate, the sharp decline in the post-fire strength highlights the need for further optimization. These findings emphasize the potential of fiber-reinforced concrete as a cost-effective solution for enhancing tunnel fire resistance, thereby supporting the development of safer and more resilient infrastructures.
The purpose of this study was to develop a more accurate model for predicting the in-situ compressive strength of concrete pavements using Internet-of-Things (IoT)-based sensors and deep-learning techniques. This study aimed to overcome the limitations of traditional methods by accounting for various environmental conditions. Comprehensive environmental and hydration data were collected using IoT sensors to capture variables such as temperature, humidity, wind speed, and curing time. Data preprocessing included the removal of outliers and selection of relevant variables. Various modeling techniques, including regression analysis, classification and regression tree (CART), and artificial neural network (ANN), were applied to predict the heat of hydration and early compressive strength of concrete. The models were evaluated using metrics such as mean absolute error (MAE) to determine their effectiveness. The ANN model demonstrated superior performance, achieving a high prediction accuracy for early-age concrete strength, with an MAE of 0.297 and a predictive accuracy of 99.8%. For heat-of-hydration temperature prediction, the ANN model also outperformed the regression and CART models, exhibiting a lower MAE of 1.395. The analysis highlighted the significant impacts of temperature and curing time on the hydration process and strength development. This study confirmed that AI-based models, particularly ANNs, are highly effective in predicting early-age concrete strength and hydration temperature under varying environmental conditions. The ability of an ANN model to handle non-linear relationships and complex interactions among variables makes it a promising tool for real-time quality control in construction. Future research should explore the integration of additional factors and long-term strength predictions to further enhance the model accuracy.
The purpose of this study was to derive an optimal mix design for bridge deck pavements that can compensate for the limitations of latexmodified concrete (LMC). To address the limitations of LMC, this paper proposes the incorporation of silica fume into LMC. Concrete mixtures with varying ratios of latex and silica fume were prepared, and tests for compressive strength, flexural strength, and chloride-ion penetration resistance were conducted to compare and analyze the fundamental performance of each mix. Latex contributed to the improvement of the initial pore structure and significantly affected the chloride-ion penetration resistance in the early stages of curing. However, its influence gradually diminished over time. In contrast, silica fume induced additional C-S-H formation and further improved the pore structure through pozzolanic reactions as time progressed, thus exerting a greater impact in the later stages of curing. The L7-SF8 variable demonstrated the best performance in terms of compressive strength and chloride-ion penetration resistance. Given the characteristics of bridge-deck pavements, this variable is considered the most suitable for ensuring long-term durability. Therefore, this paper proposes a mixture of 7% latex and 8% silica fume as the optimal mix design.
This study aimed to assess the global and domestic efforts regarding the reduction of environmental-impact-factor emissions in the production and construction processes of concrete pavements. By utilizing internationally commercialized programs, this study sought to calculate the environmental impact factors generated by specific domestic concrete-pavement projects and identify areas for improvement. This study evaluated the global and domestic efforts of environmental impact reduction by focusing on the production and construction of concrete pavements. This study calculated the environmental impact factors for five cases using internationally commercialized software. The analysis revealed that, during the production and construction of concrete pavements, Portland cement production is a dominant cause of global warming, smog, acidification, and non-carcinogenic factors, whereas aggregate production is a dominant cause of ozone depletion, eutrophication, carcinogenicity, respiratory issues, environmental toxicity, and fossil-fuel depletion. This study analyzed the environmental impact factors of material mix and process during concrete pavement production and construction using foreign life-cycle inventory (LCI) databases. The environmental impact of each input material was identified. In the future, if an LCI and life-cycle impact assessment (LCIA) database for domestic road pavement materials is established and analyzed based on the conditions presented in this study, it is expected to lay the foundation for the development of environmentally friendly materials.
Pavements have historically been used for mobility, but their usage in cities is steadily increasing owing to social and cultural development. Urban development is rapidly accelerating, primarily because of the concentration of the urban population. Additionally, the effects of the urban heat island are intensifying owing to global warming. One of the main factors contributing to this phenomenon is the increase in impermeable layers, such as asphalt and concrete pavements, in city centers. Various technological developments have been conducted to reduce the effects of urban heat islands. This study developed a moisture-retaining asphalt that absorbs moisture by incorporating a highly super-absorbent polymer (SAP) into a porous asphalt mixture, with the aim of alleviating the urban-heat-island effect. The porous asphalt mixture was designed accordingly. When the mixing design was completed, tests for the tensile strength ratio (TSR), asphalt wheel tracking, and indoor water permeability were conducted on the porous asphalt. Moreover, Hamburg wheel tracking and dynamic water acupuncture tests were performed to evaluate the compatibility of SAP moisture-retaining asphalt, and the results were as follows: Depending on the type and content of SAP, we confirmed that the TSR and permeability coefficient decreased as the amount of SAP increased, resulting in a decrease in durability. In addition, thermal characteristics and simulations showed that the SAP asphalt mixture would have a heat island reduction effect. In this paper, guidelines for the blending design of SAP moisture-retaining asphalt are presented with the aim of alleviating the urban heat island phenomenon by ensuring durability while simultaneously reducing surface temperatures.
In this research, the concrete breakout strength in tension of cast-in-place anchors (CIP) is experimentally investigated to be used as fundamental data for the seismic fragility analysis of equipment in nuclear power plants. Experimental variables are chosen, such as the embedment depth of the anchor, single/group anchor configurations, diameter of the head plate, and crack width. Monotonic and cyclic loading are applied to all types of specimens. As measured from the experiments, concrete breakout strength in tension is 1.5 to 2 times higher than the expected strengths from concrete capacity design (CCD) method-based model equations. In alignment with the model’s predictions, concrete breakout strength increases with deeper embedment depth, and the strength of group anchors also increases based on the expansion of the projected concrete failure area. This study also explores the effects of head plate diameter and crack width, which are not considered in the model equation. Experimental results show that the diameter of the head plate is not directly correlated to the concrete breakout strength, whereas the crack width is. The presence of cracks, with widths of 0.3 mm and 0.5 mm, leads to reductions of approximately 7% and 17%, respectively, compared to single anchors in non-cracked concrete.
This research introduces a novel probabilistic approach to consider the effects of uncertainty parameters during the design and construction process, providing a fresh perspective on the evaluation of the structural performance of reinforced concrete structures. The study, which categorized various random design and construction process variables into three groups, selected a two-story reinforced concrete frame as a prototype and evaluated it using a nonlinear analytical model. The effects of the uncertainty propagations to seismic responses of the prototype RC frame were probabilistically evaluated using non-linear dynamic analyses based on the Monte-Carlo simulation sampling with the Latin hypercube method. The derivation of seismic fragility curves of the RC frame from the probabilistic distributions as the results of uncertainty-propagation and the verification of whether the RC frame can meet the seismic performance objective from a probabilistic point of view represent a novel and significant contribution to the field of structural engineering.
This study was conducted to investigate the proper design of alpha board used to support concrete blocks under high loads. A board height of 50 mm was appropriate to ensure a deflection of 3 mm or less under a load of 5 tons. The trapezoidal shape of the vibration absorbers in the interior of the board reduced the maximum deflection by evenly distributing the deflection across the board width. The height of the board is the most important variable in preventing deflection, and for the same board height, adjusting the thickness of the top and bottom plates was more effective in reducing the amount of deflection than adjusting the thickness of the stiffener. The theoretical solution is a good tool for easily predicting the deflection of the board, as it shows a difference of 5 to 15% from the simulation results. However, as a 2D prediction model, the theoretical solution cannot represent the distribution of deflection over the entire board area, so the 3D simulations are necessary in predicting the amount of deflection over the entire board.
지진발생 시, 건물은 작게는 손상에서 크게는 붕괴까지 이어지므로 인명과 재산상의 피해가 생길 수 있다. 이러한 지진의 위험성에 대비하여 건물의 내진성능평가가 필요하다. 현재 내진성능평가 기법의 경우 개별 건물을 대상으로 하기에 많은 시간이 투자되어야 한다. 따라서, 지역규모의 건물들을 대상으로 하는 내진성능평가 기법의 개발이 필요한 실정이다. 본 연구는 RC 주거형 건물의 내진 성능을 평가하고 보강계획을 수립하기 위해 비선형 Shear Spring을 가진 단자유도모델을 구축하였다. 구조물의 비선형 응답을 모사 하기 위한 비선형 Shear Spring은 T-SR-μ를 매개변수로 정의된다. 해당모델에 100개의 PEER 지진을 적용하여, 최대층간변위비 응답 으로 건물의 내진성능을 평가하였다. 제안기법의 적용성을 확인하기 위하여 상세모델과 비교하였을 때, 두 모델 모두 건물의 내진성 능을 같은 수준으로 판단하였음을 확인하였다. 본 연구는 제안된 방식이 실제 건물의 내진성능을 예측할 수 있음을 보여주었다.
본 연구는 RC(철근콘크리트) 기둥과 FRP 콘크리트 기둥의 압축성능을 P-M 상관도를 통해 비교, 분석하였으며, 특히 콘크리 트 압축강도, 보강비, FRP의 탄성계수 변화에 따른 기둥의 거동 특성을 분석하였다. 연구 결과, 고강도 콘크리트(40MPa 이상) 사용 시 FRP 보강 기둥의 성능이 RC 기둥을 상회하며, 균형파괴점이 압축영역으로 이동하여 안정성이 향상됨을 확인하였다. 보강비는 0.010∼ 0.015 범위에서 최적 성능을 발휘하며, 과도한 보강은 오히려 취성파괴 위험을 증가시킬 수 있음을 확인하였다. FRP 물성 선택에 있어 낮은 파괴변형률과 적절한 탄성계수를 가진 재료를 사용하여 균형파괴점을 압축영역에 위치시키는 것이 중요함을 제시하였다. 본 연구 는 FRP 보강 기둥 설계 시 콘크리트 강도, 보강비, FRP 물성을 종합적으로 고려하여 압축성능을 최적화하고 안정성을 확보할 수 있는 방안을 제시하였다. 이러한 결과는 FRP 보강 콘크리트 기둥의 효과적인 설계 및 성능 향상에 기여할 것으로 기대된다.
최근 지구온난화로 인해 폭우, 눈 등 이상기후가 발생하면서 노면 동결(블랙아이스)로 인한 사고 및 인명피해가 늘어나고 있 는 것이 문제가 되고 있다. 이를 최소화하기 위해 본 연구에서는 다공성 골재인 팽창점토에 열저장이 가능한 상변화물질(PCM)을 적용 하였다. PCM은 상변화 과정에서 열에너지를 흡수, 저장, 방출할 수 있는 소재로 온도에 따른 결빙을 최소화할 수 있다. 따라서 본 연 구에서는 시멘트 복합재에 적용되는 PCM 함침이 가능한 경량골재에 진공함침을 실시하고 기계적, 열적 성능 검증 연구를 수행하였다. 열적 성능을 향상시키기 위해 다중벽탄소나노튜브(MWCNT)와 실리카흄을 첨가하였다. 본 연구에서는 물체의 열적 성능을 측정할 수 있는 DSC 실험을 통해 PCM 함침 경량골재 및 콘크리트 복합체의 열적 성능을 검증하였다. 콘크리트 복합체 제작 후 압축강도 시험 과 열적 성능시험을 실시하였다. 이때 열적 성능을 검증하기 위해 항온항습 챔버를 이용하여 시험을 진행하였다. 압축강도 실험을 통 해 MWCNT의 분삭액을 혼입한 PCM 함침 팽창점토가 적용된 콘크리트 복합체의 평균 압축강도는 24MPa 이상으로 구조물에 적용이 가능함을 확인하였다. 열적 성능시험을 통해 PCM 함침 팽창점토가 적용된 콘크리트 복합체는 영하의 외기온도에서도 영상의 온도를 유지할 수 있음을 확인하였다. 이와 같은 결과를 통해 주거 및 상업 건물 및 다양한 구조물에 적용이 가능할 것으로 판단된다.
국내에서는 공용 중인 교량의 덧씌우기식 교면 포장 공사에서 빠른 개통을 위해 초속경 시멘트와 라텍스를 이용한 초속경 LMC 콘 크리트가 주로 적용된다. 고속도로에서는 교통 개방을 위한 콘크리트의 기준 강도를 압축강도 21MPa로 정하고 있다. 본 연구에서는 시공된 콘크리트의 강도 추정을 위한 적절한 비파괴 시험 방법을 선정하기 위해 약간의 손상을 포함하는 Break-off 시험을 적용하였 다. 실내 실험을 통해 수립된 시험 절차에 따라 47개 현장에서 시험을 수행하여 압축강도와 상관관계를 분석하였고, 현장적용성을 확 인하였다.