검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 543

        41.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This work provided a review of three techniques—(1) spectrochemical, (2) electrochemical, and (3) spectroelectrochemical– for molten salt medias. A spectroelectrochemical system was designed by utilizing this information. Here, we designed a spectroelectrochemical cell (SEC) and calibrated temperature controllers, and performed initial tests to explore the system’s capability limit. There were several issues and a redesign of the cell was accomplished. The modification of the design allowed us to assemble, align the system with the light sources, and successfully transferred the setup inside a controlled environment. A preliminary run was executed to obtain transmission and absorption background of NaCl-CaCl2 salt at 600°C. It shows that the quartz cuvette has high transmittance effects across all wavelengths and there were lower transmittance effects at the lower wavelength in the molten salt media. Despite a successful initial run, the quartz vessel was mated to the inner cavity of the SEC body. Moreover, there was shearing in the patch cord which resulted in damage to the fiber optic cable, deterioration of the SEC, corrosion in the connection of the cell body, and fiber optic damage. The next generation of the SEC should attach a high temperature fiber optic patch cords without introducing internal mechanical stress to the patch cord body. In addition, MACOR should be used as the cell body materials to prevent corrosion of the surface and avoid the mating issue and a use of an adapter from a manufacturer that combines the free beam to a fiber optic cable should be incorporated in the future design.
        5,700원
        46.
        2022.05 구독 인증기관·개인회원 무료
        In this work, we introduce a 100 kW class mobile plasma melting system designed for non-combustible radioactive wastes treatment. To ensure mobility, the designed system consists of two 24-ft commercial containers, each in charge of the plasma utilities and melting process. In the container for plasma utilities, a 100 kW class DC power supply is installed together with a chiller and gas supply system whereas the container for melting process has a transferred type arc melter as well as off-gas treatment system consisting of a heat exchanger, filtrations, scrubber and NOx removal system. As a heat source for a transferred type arc melter, we adopted a hollow electrode plasma torch with reverse polarity discharge structure. Detailed design for a 100 kW class mobile plasma melting system will be presented together with the main specifications of the components. In addition, the basic performance data of the melting system is also presented and discussed.
        47.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seismic demand on nonstructural components (NSCs) is highly dependent on the coupled behavior of a combined supporting structure- NSC system. Because of the inherent complexities of the problem, many of the affecting factors are inevitably neglected or simplified based on engineering judgments in current seismic design codes. However, a systematic analysis of the key affecting factors should establish reasonable seismic design provisions for NSCs. In this study, an idealized 2-DOF model simulating the coupled structure-NSC system was constructed to analyze the parameters that affect the response of NSCs comprehensively. The analyses were conducted to evaluate the effects of structure-NSC mass ratio, structure, and NSC nonlinearities on the peak component acceleration. Also, the appropriateness of component ductility factor (R p) given by current codes was discussed based on the required ductility capacity of NSCs. It was observed that the responses of NSCs on the coupled system were significantly affected by the mass ratio, resulting in lower accelerations than the floor spectrum-based response, which neglected the interaction effects. Also, the component amplification factor (a p) in current provisions tended to underestimate the dynamic amplification of NSCs with a mass ratio of less than 15%. The nonlinearity of NSCs decreased the component responses. In some cases, the code-specified R p caused nonlinear deformation far beyond the ductility capacity of NSCs, and a practically unacceptable level of ductility was required for short-period NSCs to achieve the assigned amount of response reduction.
        4,300원
        50.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we propose a standardized design method using dimensionless design factors (specific catchment area, specific storage capacity) for the catchment area and storage tank capacity for the installation of rainwater facilities under rainfall conditions in Korea. As a result of simulating the water-saving efficiency of rainwater facilities that supply toilet flushing water in 17 office buildings in the metropolitan area, it was confirmed that the specific catchment area is a major design factor affecting the water-saving efficiency. In order to achieve the annual water-saving efficiency of 30%, it was evaluated that the specific catchment area and the specific rainwater storage capacity required 0.2 or more, respectively. In addition, when looking at the monthly water-saving efficiency, it is estimated that 100% of the required water demand can be supplied for up to three months from July to September under optimal conditions. Due to the annual rainfall variation, there is a limit to using all of the collected rainwater as toilet flushing water. Consideration of temporary use for other purposes should be reflected in the design stage of the building considering the characteristics of the target building and local conditions. In the future, follow-up studies are needed for field verification of dimensionless design and efficiency evaluation based on water supply and demand.
        4,000원
        51.
        2021.12 구독 인증기관 무료, 개인회원 유료
        With the development of the global marine transportation industry, marine accidents frequently occur due to the complex and changeable climate environment, and maritime search and rescue work has thus received much attention. To improve marine search and rescue operations, an algorithm for environmental modeling and search path optimization based on an ant colony system is proposed. First, MAKLINK is selected to build an ecological model. Secondly, the relevant parameters of the ant colony system algorithm are established, and the search and rescue route is designed. Finally, simulations of the environmental model and route design are constructed in search and rescue waters in Zhoushan, Zhejiang Province, using MATLAB. Experimental results prove the validity of this algorithm.
        4,000원
        52.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 선박 기관실 내의 효율적인 감시를 위한 팬-틸트-줌(PTZ) 카메라 기반의 모니터링 시스템의 설계 방법을 다룬다. 선 박 기관실에는 여전히 전통적인 아날로그 계기들을 사용하는 곳이 많고, 침수나 화재 등 안전과 밀접하게 관련된 사각지대들이 다수 존 재한다. 이러한 감시 개소들에 대하여 비교적 빠른 주기로 넓은 범위를 보장하는 카메라 기반 감시 시스템은 선박의 안전을 강화시킬 수 있는 효과적인 대안이 될 수 있다. 이에 본 연구에서는 기존 PTZ 카메라의 기능들을 소프트웨어적 방법으로 더욱 강화시킨 형태의 모니 터링 시스템을 제안한다. 보다 구체적으로는 카메라제어 모듈, 위치등록 모듈, 순회제어 모듈, 멀티뷰 영상재구성 모듈로 구성된 모니터 링 시스템의 설계 방법을 제안하고, 제안된 방법은 기관실 환경에서의 실험을 통해 그 효용성을 평가한다.
        4,000원
        53.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the era of the 4th industrial revolution driven by the convergence of ICT(information and communication technology) and manufacturing, research on smart factories is being actively conducted. In particular, the manufacturing industry prefers smart factories that autonomously connect and analyze data. For the efficient implementation of smart factories, it is essential to have an integrated production system that vertically integrates separately operated production equipment and heterogeneous S/W systems such as ERP, MES. In addition, it is necessary to double-verify production data by using automatic data collection technology so that the production process can be traced transparently. In this study, we want to show a case of data-centered integration of a large aircraft parts processing factory that requires high precision, takes a long time, and has the characteristics of processing large raw materials. For this, the components of the data-oriented integrated production system were identified and the connection structure between them was explained. And we would like to share the experience gained through the design and implementation case. The integrated production system proposed in this study integrates internal components based on data, which is expected to serve as a basis for SMEs to develop into an advanced stage, and traces materials with RFID technology.
        4,300원
        54.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        공간 샘플링은 공간모델링 연구에 활용되어 샘플링 비용을 줄이면서 모델링의 효율성을 높이는 역할을 한다. 농업분야에서는 기후변화 영향을 예측하고 평가하기 위한 고해상도 공간자료 기반 모델링에 대한 연구 수요가 빠르게 증가하고 있으며, 이에 따라 공간 샘플링의 필요성과 중요성이 증가하고 있다. 본 연구는 국내 농지 공간샘플링 연구를 통해 농업분야 기후변화연구의 공간자료 활용의 효율성을 제고하고자 하였다. 본 연구는 층화랜덤샘플링 을 기반으로 하였으며, 1 km 해상도의 농지 공간격자자료 모집단 (11,386개 격자)에 대해서 RCP 시나리오별 (RCP 4.5/8.5) 연대별 (2030/2050/2080년대) 공간샘플링을 설 계하였다. 국내 농지는 기상 및 토양 특성에 따라 계층화 되었으며, 샘플링 효율 극대화를 위해 최적 층화 및 샘플 배정 최적화를 수행하였다. 최적화는 작물수량, 온실가스 배출량, 해충 분포 확률을 포함하는 16개 목표 변수에 대해 주어진 정밀도 제한 내에서 샘플 수를 최소화하는 방향으로 진행되었다. 샘플링의 정밀도와 정확도 평가는 각각 변동계수 (CV)와 상대적 편향을 기반으로 하였다. 국내 농지 공간격자 모집단 계층화 및 샘플 배정 및 샘플 수 최적화 결과, 전체 농지는 5~21개 계층, 46~69개 샘플 수 수준에서 최적화되었다. 본 연구결과물들은 국내 농업시스템 대표 공간격자로써 널리 활용될 수 있을 것으로 기대된다. 또한, 기후변화 영향예측 공간모델링 연구들에 활용되어 샘플링 비용 및 계산 시간을 줄이면서도 모델의 효율성을 높이는 데에 기여할 수 있다.
        4,000원
        55.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A mid-story isolation system was proposed for seismic response reduction of high-rise buildings and presented good control performance. Control performance of a mid-story isolation system was enhanced by introducing semi-active control devices into isolation systems. Seismic response reduction capacity of a semi-active mid-story isolation system mainly depends on effect of control algorithm. AI(Artificial Intelligence)-based control algorithm was developed for control of a semi-active mid-story isolation system in this study. For this research, an practical structure of Shiodome Sumitomo building in Japan which has a mid-story isolation system was used as an example structure. An MR (magnetorheological) damper was used to make a semi-active mid-story isolation system in example model. In numerical simulation, seismic response prediction model was generated by one of supervised learning model, i.e. an RNN (Recurrent Neural Network). Deep Q-network (DQN) out of reinforcement learning algorithms was employed to develop control algorithm The numerical simulation results presented that the DQN algorithm can effectively control a semi-active mid-story isolation system resulting in successful reduction of seismic responses.
        4,000원
        1 2 3 4 5