검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 990

        101.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Hydrogen gas is usually used in many industrial facilities, for instance, such as semiconductor, vehicle and gas station. Because hydrogen embrittlement leads to the big damages in bolts, nut, especially, high pressure valves with common materials, therefore, special alloy including Monel material is recommended to reduce the hydrogen embrittlement. The purpose of this study is to investigate the characteristics of Monel within elastic limit through numerical analysis when Monel is drawn by drawing system. As the results, it showed that safety factor was decreased, but deformation and stress was increased, when the number of pass was increased. Furthermore, the method for designating work hardening in numerical simulation was needed to achieve the exact solution in this study.
        4,000원
        102.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, 3D printing has been actively studied. A representative material in this 3D printing technology is plastic, and PLA, an eco-friendly material, is widely used. FDM is widely used as a way to output these PLA materials. However, this method lacks mechanical properties compared to injection-molded products as it is a method of stacking materials by melting. Therefore, in this study, using an FDM-type 3D printer, a tensile test was performed after printing a tensile specimen with PLA filament with the layer angle and layer density as control factors. After that, changes in tensile properties according to the layer angle and density were compared and evaluated. As a result, to improve the tensile strength, the layer density had to be considered, and to improve the elastic modulus, both the layer angle and the layer density had to be considered.
        4,000원
        103.
        2022.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, using deep learning, super-resolution images of transmission electron microscope (TEM) images were generated for nanomaterial analysis. 1169 paired images with 256  256 pixels (high resolution: HR) from TEM measurements and 32  32 pixels (low resolution: LR) produced using the python module openCV were trained with deep learning models. The TEM images were related to DyVO4 nanomaterials synthesized by hydrothermal methods. Mean-absolute-error (MAE), peak-signal-to-noise-ratio (PSNR), and structural similarity (SSIM) were used as metrics to evaluate the performance of the models. First, a super-resolution image (SR) was obtained using the traditional interpolation method used in computer vision. In the SR image at low magnification, the shape of the nanomaterial improved. However, the SR images at medium and high magnification failed to show the characteristics of the lattice of the nanomaterials. Second, to obtain a SR image, the deep learning model includes a residual network which reduces the loss of spatial information in the convolutional process of obtaining a feature map. In the process of optimizing the deep learning model, it was confirmed that the performance of the model improved as the number of data increased. In addition, by optimizing the deep learning model using the loss function, including MAE and SSIM at the same time, improved results of the nanomaterial lattice in SR images were achieved at medium and high magnifications. The final proposed deep learning model used four residual blocks to obtain the characteristic map of the low-resolution image, and the super-resolution image was completed using Upsampling2D and the residual block three times.
        4,000원
        104.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A Cu-15Ag-5P filler metal (BCuP-5) is fabricated on a Ag substrate using a high-velocity oxygen fuel (HVOF) thermal spray process, followed by post-heat treatment (300oC for 1 h and 400oC for 1 h) of the HVOF coating layers to control its microstructure and mechanical properties. Additionally, the microstructure and mechanical properties are evaluated according to the post-heat treatment conditions. The porosity of the heat-treated coating layers are significantly reduced to less than half those of the as-sprayed coating layer, and the pore shape changes to a spherical shape. The constituent phases of the coating layers are Cu, Ag, and Cu-Ag-Cu3P eutectic, which is identical to the initial powder feedstock. A more uniform microstructure is obtained as the heat-treatment temperature increases. The hardness of the coating layer is 154.6 Hv (as-sprayed), 161.2 Hv (300oC for 1 h), and 167.0 Hv (400oC for 1 h), which increases with increasing heat-treatment temperature, and is 2.35 times higher than that of the conventional cast alloy. As a result of the pull-out test, loss or separation of the coating layer rarely occurs in the heat-treated coating layer.
        4,000원
        105.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 다중벽 탄소나노튜브(MWCNT)로 보강된 복합재 구조의 동적 해석을 다루었다. Mori-Tanaka 모델을 기반으 로 MWCNT 중량 비율, 패널의 곡률, 그리고 CNT의 임의 배열이 복합재의 동적거동에 미치는 상호작용을 연구하였다. 본 연구 결과는 CNT의 부피함유비율의 변화에 따른 복합재의 유효탄성계수를 예측하는 기존 문헌결과와 비교하여 검증하였다. 수치해 석 예제는 복합재의 동적 특성을 평가함에 있어서 MWCNT 보강의 불규칙한 배열 또는 기울어진 방향으로 배치된 효과에 대한 중요성을 제시하였다.
        4,000원
        106.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.
        4,800원
        107.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As the demand for appropriate heat dissipation measures to improve product stability and performance continues to increase and product design becomes highly integrated, research to improve heat transfer performance while maintaining the same area or size is required. In this study, the sample-shaped aluminum plate was treated as upper-coating, and the thickness of the coating was divided into 1mm, 2mm, and 3mm, respectively, and the coating material was applied with silver, copper, and graphene. The temperature condition of the heat source was set to 473K, and heat dissipation analysis was performed under natural convection. The thermal performance was compared and analyzed through temperature distribution, flow velocity distribution, and heat flux, and it was confirmed that the high thermal conductivity of graphene compared to other materials had a dominant effect on the increase in the conduction heat transfer rate. And it was confirmed that the high surface temperature of the graphene coating also increased the heat transfer rate by convection, thereby enhancing the heat dissipation effect.
        4,000원
        108.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental regulations of the International Maritime Organization (IMO) are getting stricter, and the demand for replacing the fuel of ships with eco-friendly fuels instead of heavy oil in the shipbuilding and marine industries is increasing. Among eco-friendly fuels, LNG (liquefied natural gas) is currently the most popular fuel. This is because it is an alternative that can avoid the IMO's environmental regulations by replacing fuel. In PART 1, as a basic study of laser welding of high manganese steel materials, a fiber laser bead-on-plate experiment was conducted using nitrogen protective gas, and the effect of each factor on the penetration shape was analyzed through cross-sectional observation. In PART II, argon and helium shielding gases, not the nitrogen shielding gas used in PART I, were tested under the same experimental conditions and the effect of the shielding gas on penetration during laser welding was conducted.
        4,000원
        109.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Environmental regulations of the IMO (International Maritime Organization) are becoming more and more conservative. In order to respond to IMO, the demand for replacing the fuel of ships with eco-friendly fuels instead of conventional heavy oil is increasing in the shipbuilding and offshore industries. Among eco-friendly fuels, LNG (Liquefied Natural Gas) is currently the most popular fuel. LNG is characteristically liquefied at -163 degrees, and at this time, its volume is reduced to 1/600, so it is transported in a cryogenic liquefied state for transport efficiency. A tank for storing this should have sufficient mechanical/thermal performance at cryogenic temperatures, and among them, high manganese steel is known as a material with high price competitiveness and satisfying these performance. However, high manganese steel has a limitation in that the mechanical performance of the filler metal is lower than that of the base metal called ‘under matching’. In this study, to overcome this limitation, a basic study was conducted to apply the fiber laser welding method without filler metal to high manganese steel. To obtain efficient welding conditions, in this study, bead-on-plate welding was performed by changing the fiber laser welding speed and output using helium shielding gas, and the effect of each factor on the penetration shape was analyzed through cross-sectional observation.
        4,000원
        110.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 μm, and the surface fluctuation is measured as approximately 3.2 μm. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.
        4,000원
        111.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study installed and evaluated the efficiency of a radon barrier membrane, radon mat, and radon well in the removal and reduction of radon gas that originates from the soil and flows indoors. The study aims to present a fundamental and long-term solution to radon reduction in buildings by preventing soil radon, which is the main source of radon gas, from migrating indoors. A radon barrier membrane, radon mat, and radon well were developed and verified, and the radon reduction effect of each system was evaluated. Through applying a special radon gas blocking film with a 5-layer structure, the radon barrier membrane prevents radon gas particles from passing through the polymer deposited on the radon blocking film. The radon mat is a type of radon reduction construction method that induces radon gas generated from the soil under the building to move in the desired direction through the plate-structured pressure reducing panel and discharges radon gas to the outside of the building through an exhaust pipe and fan installed at the edge. In addition, the radon well can also be applied to special structures such as old buildings and historical sites where it is difficult to directly reduce radon concentration within the building foundation, because the intake area can be controlled and, therefore, the method can be applied in a variety of environments and ranges. In the case of Intervention 1 (installing a radon barrier membrane and radon mat), the soil radon was reduced by 24.7%. Intervention 2 (installing a radon barrier membrane, radon mat, and radon well) reduced the soil radon by 45.1%, indicating that the effect of reducing the soil radon concentration was 1.8 times higher compared with installing only the radon barrier membrane and radon mat. The measurement showed that the indoor radon concentration was reduced by 46.5%, following the reduction in soil radon concentration through Interventions 1 and 2, demonstrating the effect of reducing indoor radon gas by installing the radon barrier membrane, radon mat, and radon well. Through the production and installation of prototype systems, this study confirmed the reduction effect of radon concentration in soil and indoor air. These systems achieved a higher efficiency at a relatively low cost than that achieved with the existing radon reduction methods applied in Korea and abroad.
        4,000원
        114.
        2022.06 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 반도체 특성의 단일벽 탄소나노튜브(semi-SWNTs)와 페로브스카이트(perovskite) 양자 점을 혼합하여 SWNT의 높은 전하 이동 특성과 양자점의 고효율 광전 특성을 동시에 가지는 용액공정 가 능한 기반 고성능 광센서를 개발하기 위한 연구를 수행하였다. 직경이 작은 SWNT를 공액 구조 고분자 반도체를 이용해 선택적으로 분리/분산하는 방법으로 제조하여 포토트랜지스터의 반도체 채널 층으로 활 용하고, 가시광 빛에 높은 흡광도를 가지는 양자점을 다양한 조성과 구조를 가지는 광활성층으로 제조하 여 그 특성을 비교 분석하였다. 이 결과 semi-SWNTs와 페로브스카이트 양자점 모두 단독으로 TFT에 사 용하였을 경우 우수한 트랜지스터 특성과는 별개로 광전효과가 크게 나타나지 않았으며, 두 종류 이상의 반도체 소재를 융합하여 사용할 경우 양자점에 흡수된 빛에 의해 엑시톤이 형성되고 이종 접합 계면에서 전자와 정공의 분리가 쉽게 이루어지도록 유도함으로써 낮은 광량에서도 높은 효율을 가지는 포토트랜지 스터를 개발할 수 있었다. 향후 지속적인 연구개발을 통해 고유연/저가 광 센서 제품 개발과 레이더, 이미 지 센서, 웨어러블 헬스케어 등의 다양한 분야에 하이브리드 반도체 포토트랜지스터가 응용될 수 있을 것 으로 기대한다.
        4,000원
        115.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to verify how similar the virtual fit pants are to the actual fit of stretchable pants. Data is produced using a virtual model to apply movements. The results show that in the upright position, the similarity between the appearance of the actual fit and the virtual fit is high. Results are 4.47, 4.13 and 4.33 out of 5 on the front, side, and back, respectively. The base line of the front and back, and the amount of allowance in each part were well reproduced by the model. The texture of the virtual fit was evaluated and found to be similar to the actual fabric. In terms of shape and number of wrinkles with the virtual fit pants, large wrinkles were better expressed than fine wrinkles. After applying movements to the virtual model, the front and side results were similar to the actual fit, but the back results were different. As a result of multiple comparisons, the greatest difference in similarity by movements is found in the center front line. The similarity difference was lower on the side than on the front. The only significant difference after applying movements is in the hip circumference margin. According to movements, the similarity of virtual fit is lower on the back than on the front and side, and the back also has the largest similarity differences to the movements type.
        4,800원
        117.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자연발화 현상은 산업현장 또는 우리 생활 속 어디에서나 발생하며 물질이 대기 중에서 점 화원 없이 스스로 발화되는 현상이다. 화학반응 속도가 빨라져 발생하는 열이 증가하게 되어 자연발화의 위험성은 더욱 커진다. 본 연구에서는 식품과 화장품 소재로 이용되는 안전한 원료를 배합하여 다양한 자연발화 현상 중 특히 석탄 자연발화 방지제를 제조하였다. 인도네시아산 저열량, 저급탄에 대한 Lab 과 Field Test를 통하여 석탄 자연발화 억제 효과를 확인하였다. 옥외 현장 테스트 결과, 비교군(90일 후 발화)에 비하여 본 연구에서 제조한 발화방지제는 120일 이상 우수한 자연 발화억제 효과를 나타내었으 며 실내저탄장에서 50일 동안의 CO의 농도변화를 비교하여 CO 농도 제어 효과를 확인하였다. 비교군 인 석탄, 기존의 발화 방지 방법보다 우수한 결과를 확인하였다. 또한, 환경을 고려한 토양 및 수질 시 험, 작업 근로자를 고려한 발화방지제의 MSDS, 수질, 안 자극 등의 공인시험을 통하여 환경과 근로자 작업환경의 안전성 등을 연구하여 2024년부터 적용되는 실내저탄장용 석탄 발화방지제의 가능성을 확인 할 수 있었다.
        4,000원
        118.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 장흥지역에서 자생 및 재배한 총 3가지 식물을 수증기 증류 추출(편백, 석창포, 라벤 더)을 통해 얻은 각 천연 에센셜 오일에 대한 GC-MSD 향기 성분 분석 후 추출된 오일들과 시판 오일(클 라리세이지, 시나몬, 프랑킨센스)을 조합하여 세포독성, 항산화, 항염, 미백 효과를 확인하여 화장품 소재로 서의 가능성을 확인하였다. 향기 성분 분석 결과 편백 오일의 주요 성분으로는 Sabinene, 석창포 오일은 Asarone, 라벤더 오일은 L-Linalool이 동정되었다. 6종 에센셜 조합 오일의 세포독성이 확인되지 않은 100 μL/mL의 농도에서 NO 생성은 27.76% 억제, DPPH 라디칼 소거능은 99.69%, ABTS 라디칼 소거 능은 94.66%, 티로시나아제 저해활성은 55.9%를 보여 기능성 화장품 원료로서 유용하게 활용할 수 있는 가능성을 제시하였다.
        4,200원
        119.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the environmental regulations of the International Maritime Organization (IMO), the number of ships using cryogenic fuel such as LNG (liquefied natural gas) is increasing rapidly, and the demand for eco-friendly ships is expected to grow further in the future. The material of the tank for storing cryogenic fuel such as LNG is limited within the IGC Code, and available materials include 9% nickel steel, Invar (36% nickel steel), Al5083-0, STS304L, and high manganese steel. Recently, 9% nickel steel has been used as a tank in LNG fuel-powered ship projects, and it has excellent thermal/mechanical properties in cryogenic LNG environmental conditions (-163°C). In this study, it is conducted an experimental study on SAW(Submerged Arc welding), which has better welding efficiency than FCAW(Flux Cored Arc Welding), which is mainly used for 9% nickel steel materials. In addition, to verify the reliability of the welded part after the welding test, cross-sectional observation of the welded part was performed and the mechanical properties such as the tensile strength and cryogenic impact strength of the welded part were evaluated.
        4,000원
        120.
        2022.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.
        4,000원