검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 134

        101.
        2018.05 서비스 종료(열람 제한)
        Background : Although the inhibitory effect of mistletoe on cancer cell growth has been reported, the underlying mechanisms to explain its anti-proliferative activity are not fully studied. Thus, we elucidated the potential molecular mechanism of the branch from taxillus yadoriki (TY) parasitic to Neolitsea sericea (NS) (TY-NS-B) for the anti-proliferative effect. Methods and Results : In comparison of anti-proliferative effect of TY from the host trees such as Cryptomeria japonica (CJ), Neolitsea sericea (NS), Prunus serrulata (PS), Cinnamomum camphora (CC) and Quercus acutissima (QA), TY-NS showed higher anti-cell proliferative effect than TY-CJ, TY-PS, TY-CC or TY-QA. In addition, the anti-proliferative effect of branch from TY from all host trees was better than leaves. Thus, we selected the branch from Taxillus yadoriki parasitic to Neolitsea sericea (TY-NS-B) for the further study. TY-NS-B inhibited the cell proliferation in the various cancer cells and downregulated cyclin D1 protein level. MG132 treatment attenuated cyclin D1 downregulation of cyclin D1 protein level by TY-NS-B. In addition, TY-NS-B increased threonine-286 (T286) phosphorylation of cyclin D1, and the mutation of T286 to alanine (T286A) blocked cyclin D1 proteasomal degradation by TY-NS-B. But the upstream factors related to cyclin D1 degradation such as ERK1/2, p38, JNK, GSK3β, PI3K, IκK or ROS did not affect cyclin D1 degradation by TY-NS-B. However, LMB treatment was observed to inhibit cyclin D1 degradation by TY-NS-B, and T286A blocked cyclin D1 degradation through suppressing cyclin D1 redistribution from nucleus to cytoplasm by TY-NS-B. In addition, TY-NS-B activated CRM1 expression. Conclusion : Our results suggest that TY-NS-B may suppress cell proliferation by downregulating cyclin D1 protein level through proteasomal degradation via T286 phosphorylation-dependent cyclin D1 nuclear export. These findings will provide the evidence that TY-NS-B has potential to be a candidate for the development of chemoprevention or therapeutic agents for human cancer.
        102.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        Background: Astilbe chinensis (Maxim.) Franch. Et Savat. is a plant belonging to Saxifragaceae family and contains various active ingredients including astilbin and bergenin. It has been used as a traditional Korean medicine to improve fever, pain, and cough. Recently, a number of Korean medical resources have been studied for cancer and inflammation treatment, but A. chinensis (Maxim.) Franch. Et Savat. has not yet been investigated. Consequently, this study investigated the inhibitory effect of ethanol extracts from A. chinensis (Maxim.) Franch. Et Savat. (ARE) on oxidative stress and colorectal cancer using RAW264.7 and the human colorectal cancer cell line HCT-116. Methods and Results: In total, 500 ㎍/㎖ ARE reduced cell viability by 38.96 ± 1.32%, and increased caspase-3 activity by 133.08 ± 3.41% in HCT-116 cells. Moreover, TUNEL signaling and the early apoptosis ratio (34.56 ± 1.67%) increased by 500 ㎍/㎖ ARE treatment. H2O2-induced oxidative stress and cell death were diminished by 500 ㎍/㎖ ARE treatment through decreasing ROS (reactive oxygen species). Conclusions: The inhibitory effects of ARE against human colorectal cancer cells is mediated by apoptosis and caspase-3 activation, and H2O2-induced ROS generation and cell death are decreased by ARE treatment in RAW264.7 cells. However, further study is required to explore how ARE treatment is involved in the signaling pathway to decrease ROS.
        103.
        2018.04 KCI 등재 서비스 종료(열람 제한)
        Doxorubicin is a anti-cancer drugs that interferes with the growth and spread of cancer cells in human body. Doxorubicin is used to treat different types of cancers that affect the ovary, thyoid and lungs, but induced side effect such as nephrotoxicity and cardiotoxicity. Thus, we investigated that the effect of iridin on doxorubicin-induced necrosis in HK-2 cells, a human proximal tubule cell. To confirm effect of iridin on doxorubicin-induced necrosis, HK-2 cells are treated with 10 μM doxorubicin and 80 μM iridin. 80 μM iridin reduced 10 μM doxorubicin-induced necrosis, the mitochondrial over activation and caspase-3 activation. However, iridin reduces anti-cancer effect of doxorubicin such as PARP1 and caspase-3 activation, checkpoint proteins (CDK4 and CDK6) in NCI-H1129 cells (Human non-small cell lung cancer cell). In HCT-116 cells (Human colorectan cancer cell), iridin do not increased protein expression of CDK4 and CDK6 decreased by doxorubicin. Results indicate that treatment of iridin was diminished doxorubicin-induced necrosis in HK-2 cells. However, iridin was decreased anti-cancer effect of doxorubicin on NCI-H1229, but not HCT-116. Thus, further experiment are required to iridin treatment on various cancer cells and animal models because effect of iridin different cell type.
        104.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        In this study, we elucidated anti-cancer activity and potential molecular mechanism of 70% ethanol extracts from Taxilli Ramulus (Taxillus chinensis (DC.) Danser) (TR-E70) against human colorectal cancer cells. Anti-cell proliferative effect of TR-E70 was evaluated by MTT assay. The effect of TR-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. TR-E70 suppressed the proliferation of human colorectal cancer cell lines, HCT116 and SW480. Although TR-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by TR-E70 more dramatically occurred than that of cyclin D1 mRNA. Cyclin D1 downregulation by TR-E70 was attenuated in presence of MG132. In addition, TR-E70 phosphorylated threonine-286 (T286) of cyclin D1. TR-E70-mediated cyclin D1 degradation was blocked in presence of LiCl as an inhibitor GSK3β but not PD98059 as an ERK1/2 inhibitor and SB203580 as a p38 inhibitor. Our results suggest that TR-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through GSK3β-dependent cyclin D1 degradation. From these findings, TR-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.
        105.
        2017.10 KCI 등재 서비스 종료(열람 제한)
        Background: In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of the root of Aralia cordata var. continentalis (Kitagawa) Y. C. Chu (RAc-E70) against human colorectal cancer cells. Methods and Results: RAc-E70 suppressed the proliferation of the human colorectal cancer cell lines, HCT116 and SW480. Although RAc-E70 reduction cyclin D1 expression at the protein and mRNA levels, RAc-E70-induced reduction in cyclin D1 protein level occurred more dramatically than that of cyclin D1 mRNA. The RAc-E70-induced downregulation of cyclin D1 expression was attenuated in the presence of MG132. Additionally, RAc-E70 reduced HA-cyclin D1 levels in HCT116 cells transfected with HA-tagged wild type-cyclin D1 expression vector. RAc-E70-mediated cyclin D1 degradation was blocked in the presence of LiCl, a GSK3β inhibitorbut, but not PD98059, an ERK1/2 inhibitor and SB203580, a p38 inhibitor. Furthermore, RAc-E70 phosphorylated cyclin D1 at threonine-286 (T286), and LiCl-induced GSK3β inhibition reduced the RAc-E70-mediated phosphorylation of cyclin D1 at T286. Conclusions: Our results suggested that RAc-E70 may downregulate cyclin D1 expression as a potential anti-cancer target through GSK3β-dependent cyclin D1 degradation. Based on these findings, RAc-E70 maybe a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer.
        108.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        In this study, we elucidated the molecular mechanism of silymarin by which silymarin may inhibits cell proliferation in human colorectal cancer cells in order to search the new potential anti-cancer target associated with the cell growth arrest. Silymarin reduced the level of c-Myc protein but not mRNA level indicating that silymarin-mediated downregulation of c-Myc may result from the proteasomal degradation. In the confirmation of silymarin-mediated c-Myc degradation, MG132 as a proteasome inhibitor attenuated c-Myc degradation by silymarin. In addition, silymarin phosphorylated the threonine-58 (Thr58) of c-Myc and the point mutation of Thr58 to alanine blocked its degradation by silymarin, which indicates that Thr58 phosphorylation may be an important modification for silymarin-mediated c-Myc degradation. We observed that the inhibition of ERK1/2, p38 and GSK3β blocked the Thr58 phosphorylation and subsequent c-Myc degradation by silymarin. Finally, the point mutation of Thr58 to alanine attenuated silymarin-mediated inhibition of the cell growth. The results suggest that silymarin induces the cell growth arrest through c-Myc proteasomal degradation via ERK1/2, p38 and GSK3β-dependent Thr58 phosphorylation.
        109.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        Metformin is the most commonly prescribed anti-diabetic drug with relatively minor side effect. Substantial evidence has suggested that metformin is associated with decreased cancer risk and anticancer activity against diverse cancer cells. The tyrosine kinase inhibitor imatinib has shown powerful activity for treatment of chronic myeloid leukemia and also induces growth arrest and apoptosis in colorectal cancer cells. In this study, we tested the combination of imatinib and metformin against HCT15 colorectal cancer cells for effects on cell viability, cell cycle and autophagy. Our data show that metformin synergistically enhances the imatinib cytotoxicity in HCT15 cells as indicated by combination and drug reduction indices. We also demonstrate that the combination causes synergistic down-regulation of pERK, cell cycle arrest in S and G2/M phases via reduction of cyclin B1 level. Moreover, the combination resulted in autophagy induction as revealed by increased acidic vesicular organelles and cleaved form of LC3-II. Inhibition of autophagic process by chloroquine led to decreased cell viability, suggesting that induction of autophagy seems to play a cell protective role that may act against anticancer effects. In conclusion, our present data suggest that metformin in combination with imatinib might be a promising therapeutic option in colorectal cancer.
        110.
        2017.05 서비스 종료(열람 제한)
        Backgrounds : The action mechanisms of several chemopreventive agents derived from herbal medicine and edible plants have become attractive issues in cancer research. Tea is the most widely consumed beverage worldwide. It have been demonstrated that the active principles of tea sources such as flower extract Camellia sinensis (CSF) and Camellia japonica (CJF)were attributed to their tea polyphenols. We focused on investigating CSF, CJF, mixtures of CSF and CJF has been proven to suppress colonic tumorigenesis. Methods and Results : In this study, human colorectal carcinoma HT-29 cells were treated with CSF, CJF, mixture of CSF and CJF to examine the anti-proliferative and pro-apoptotic effects of mixture of CSF and CJF (3 : 1), as well as the molecular mechanism underlying these effects. Cell viability assay, nuclear staining, DNA fragmentation, caspase assay, cytochrome c release, were utilized to dissect the signaling pathways. In mixture of CSF and CJF (3 : 1), CSF appeared most anticancer effect by both MTT assays and the cleavage analysis of apoptosis-related molecules and PARP. Interestingly, we found that CJF make it possible to express the apotosis inducing by CSF in a short time and apoptosis effect of CSF maintained sustainable. Conclusion : In summary, our results from this study suggest that in HT-29 human colon cancer cells (i) CSF treatment causes damage to mitochondria, and (ii) CJF contributed CSF induced apoptotic cell death mediates cytochrome C release, (ⅲ) mixture of CSF and CJF (3 : 1) the potential to function as a chemopreventive agent against colon cancer.
        111.
        2017.05 서비스 종료(열람 제한)
        Background : This study was carried out to investigate the cytotoxicity in 9 extracts from 8 medicinal plants, such as leaf extract of Lonicera maackii (Llm), leaf extract of Platycarya strobilacea (Lps), flower extract of Fagopyrum dibortryis (Fdf), stem extract of Physostegia virginiana (Spv), root extract of Allium senescence (Ras), aerial part extract of Allium schoenoprasum (Aas), aerial part extract of Artemisia japonica var. manshurica (Aaj), stem extract of Caryopteris incana (Sci), and leaf extract of Caryopteris incana (Lci), on human cancer cell lines. Methods and Results : Dried plant extracts were granted from National Institute of Horticultural and Herbal Sciences. The extracts of each plant were dissolved in DMSO and stored in deep freeze at –20℃. The cell viabilities were examined by MTT assay. On SK-OV-3 cell line, Lps, Aas, Sci ans Lci showed dose-dependent cytotoxic effect. On A549 cell line, almost samples show dose-dependent cytotoxic effect, but especially Aaj showed relatively high cytotoxic effect. In case of HCT-15 cell line, Llm and Aas showed relatively high cytotoxic effect. Conclusion : These results suggested that Lonicera maackii, Platycarya strobilacea, Fagopyrum dibortryis, Physostegia virginiana, Allium senescence, Allium schoenoprasum, Artemisia japonica var. manshurica, and Caryopteris incana can be utilized as potential sources of anticancer agent due to their cytotoxicity.
        112.
        2017.05 서비스 종료(열람 제한)
        Background : The young stem of Cinnamomum cassia (YSC) as traditional Chinese medicines has been reported to show a variety of pharmacological properties such as anti-allergy, insecticidal, antimicrobial, antiulcer, anti-inflammatory, immune-suppressive, and neuronal death prevention, tyrosinase inhibition and anticancer, antioxidant and free radical scavenging, as well as antidiabetic and aldose reductase inhibition activities. In this study, we elucidated apoptotic effect and potential molecular mechanism of hot water extracts from YSC (YSC-HW) against human colorectal cancer cells. Methods and Results : YSC-HW treatment increased ROS level and induced ROS-dependent DNA damage in human colorectal cancer cells. ROS generation mediated by YSC-HW induced DNA induced apoptosis and reduction of cell viability in human colorectal cancer cells. YSC-HW ROS-dependently induced NF-kB activation through p65 nuclear translocation via IkB-α degradation, which exerted the induction of apoptosis. In addition, YSC-HW activated ATF3 expression dependent on ROS, which resulted in apoptosis. Conclusion : Our results suggest that YSC-HW may induce apoptosis through ROS-activation of NF-kB and ATF3 in human colorectal cancer cells. From these findings, YSC-HW has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.
        113.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        종양을 효율적으로 적출, 제거하기 위해서는 부수적으로 방사선 치료 및 항암화학요법을 이용하여 수술 전이나, 수술 후 종양의 크기를 줄이거나 작게 할 수는 있었으나, 종양을 적출하거나 제거하는 방법으로 외과적 절제수술요법이 가장 재래적인 수술 방법이다. 종양의 크기를 줄이거나 작게 하는 방법과, 종양을 사멸시킬 수 있는 항암화학요법은 방사성 감수성을 증가시키는 항암약제를 종양세포에 선택적으로 투여하여 방사선에 대한 감수성에 민감하게 반응 할 수 있도록 한 것이며, 다양한 생물학적인 세포증식억제 방법중 TRAIL은 단백질을 변형 시킬 수 있으며 단백질 구조를 변형시켜 세포의 사멸에 일조를 하는 것으로 알려져 있다. 본 논문에서는 HCT-116세포를 암세포로 간주하여 TRAIL과 방사선과의 상호관계를 분석하였다. 실험결과 TRAIL과 방사선의 단독사용은 대조군과 비교해 본 결과 각각 세포증식과 세포자멸사에 유의적인 영향을 끼치지 않은 것으로 나타났다. 반대로 TRAIL로 처리하고, 방사선 조사를 병행해서 처리한 경우 HCT-116세포가 유의적으로 세포자멸사가 발생되었음을 알 수 있었고, G1대비 G0의 비율도 증가한 것으로 나타났다. 결론적으로 TRAIL은 방사선 방어적인 세포의 세포자멸사를 증가시켜 방사선 감수성을 증가시켰음을 알 수 있었으며, 또한 세포주기를 변화시켜 세포 증식 능력을 점진적으로 감소시킬 수 있었다. TRAIL은 세포자멸사를 증가시키고 세포증식 능력을 감소시켜 방사선 증감제로서 사용이 가능하다는 것으로 사료된다.
        114.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        The seed of safflower (Carthamus tinctorius L) has been reported to suppress human cancer cell proliferation. However, the mechanisms by which safflower seed inhibits cancer cell proliferation have remained nuclear. In this study, the inhibitory effect of the safflower seed (SS) on the proliferation of human colorectal cancer cells and the potential mechanism of action were examined. SS inhibited markedly the proliferation of human colorectal cancer cells (HCT116, SW480, LoVo and HT-29). In addition, SS suppressed the proliferation of human breast cancer cells (MDA-MB-231 and MCF-7). SS treatment decreased cyclin D1 protein level in human colorectal cancer cells and breast cancer cells. But, SS-mediated downregulated mRNA level of cyclin D1 was not observed. Inhibition of proteasomal degradation by MG132 attenuated cyclin D1 downregulation by SS and the half-life of cyclin D1 was decreased in SS-treated cells. In addition, SS increased cyclin D1 phosphorylation at threonine-286 and a point mutation of threonine-286 to alanine attenuated SS-mediated cyclin D1 degradation. Inhibition of ERK1/2 by PD98059 suppressed cyclin D1 phosphorylation and downregulation of cyclin D1 by SS. In conclusion, SS has anti-proliferative activity by inducing cyclin D1 proteasomal degradation through ERK1/2-dependent threonine-286 phosphorylation of cyclin D1. These findings suggest that possibly its extract could be used for treating colorectal cancer.
        115.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        Apoptosis has been regarded as a therapeutic target because apoptosis is typically disturbed in human cancer. Silymarin found in the seeds of the milk thistle (Silybum marianum) has been reported to exert anti-cancer properties through apoptosis. This study was performed to investigate the molecular target for silymarin-mediated apoptosis in human colorectal cancer cells. Silymarin reduced the cell viability and induced an apoptosis in human colorectal cancer cells. ATF3 overexpression increased PARP cleavage by silymarin. Increased ATF3 expression in both protein and mRNA was observed in silymarin-treated cells. In addition, silymarin increased the luciferase activity of ATF3 promoter. Inhibition of JNK and IκK-α blocked silymarin-mediated ATF3 expression. The results suggest that silymarin induces apoptosis through JNK and IκKα-dependent ATF3 expression in human colorectal cancer cells.
        116.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        Molecular targeting for the altered signaling pathways has been proven to be effective for the treatment of many types of human cancer, including colorectal cancer (CRC). The dual phosphatidylinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 has shown to exhibit potent antitumor activity against solid tumors. Autophagy is a cellular lysosomal catabolic process to maintain metabolic homeostasis, which has been known to be induced in response to many therapeutic agents in cancer cells. This process is negatively regulated by mTOR and often acts as prosurvival or prodeath mechanism following cancer therapeutics. The current study was designed to investigate the antiproliferation activity of BEZ235 and to evaluate the role of autophagy induced by BEZ235 using HCT15 CRC cells bearing ras oncogene mutation. We found that BEZ235 decreases cell viability, which was mostly dependent on G1 arrest of cell cycle via suppression of cyclin A expression. BEZ235 affects PI3K/Akt/mTOR signaling pathway by increasing the phosphorylation of AKT at Ser473 and RAS/RAF/MEK/ERK pathway by decreasing the phosphorylation of ERK at Tyr204. BEZ235 also stimulated autophagy induction as evidenced by the increased expression of LC3-II and abundant acidic vesicular organelles (AVOs) in the cytoplasm. In addition, the combination of BEZ235 with autophagy inhibitor chloroquine, a known antagonist of autophagy, counteracted the antiproliferation effect of BEZ235. Thus, our study indicates that autophagy induced in response to BEZ235 treatment appears to act as cell death mechanism in HCT15 CRC cells.
        117.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        Although Sophorae Flos (SF) has been reported to exert an anti-cancer activity, molecular targets and mechanisms associated with anti-cancer activity of SF have been unclear. Because cyclin D1 has been regarded as an important regulator in the cell proliferation, we focused cyclin D1 and investigated the effect of SF on the cyclin D1 regulation in light of elucidating the molecular mechanism for SF’s anti-cancer activity. The treatment of SF decreased cellular accumulation of cyclin D1 protein. However, SF did not change the level of cyclin D1 mRNA. Inhibition of proteasomal degradation by MG132 attenuated SF-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with SF. In addition, a point mutation of threonine-286 to alanine attenuated SF-mediated cyclin D1 downregulation. Inhibition of ERK1/2 by a selective inhibitor, PD98059 suppressed cyclin D1 downregulation by SF. From these results, we suggest that SF-mediated cyclin D1 downregulation may result from proteasomal degradation through its threonine-286 phosphorylation via ERK1/2. SF-induced proteasomal degradation of cyclin D1 might inhibit proliferation in human colorectal cancer cells. The current study provides information on molecular events for an anti-cancer activity of SF
        118.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        Abeliophyllum distichum Nakai (A. distichum) has been reported to exert the inhibitory effect on angiotensin converting enzyme and aldose reductase. Recently, our group found that branch extracts of A. distichum (EAFAD-B) induce apoptosis through ATF3 activation in human colon cancer cells. However, anti-cancer reagents exert their activity through the regulation of various molecular targets. Therefore, the elucidation of potential mechanisms of EAFAD-B for anti-cancer activity may be necessary. To elucidate the potential mechanism of EAFAD-B for anti-cancer activity, we evaluated the regulation of cyclin D1 in human colon cancer cells. EAFAD-B decreased cellular accumulation of cyclin D1 protein. However, cyclin D1 mRNA was not changed by EAFAD-B. Inhibition of proteasomal degradation by MG132 attenuated EAFAD-B-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with EAFAD-B. In addition, EAFAD-B induced cyclin D1 phosphorylation at threonine-286 and the point mutation of threonine-286 to alanine attenuated EAFAD-B-mediated cyclin D1 proteasomal degradation. Inhibitions of both ERK1/2 by PD98059 and NF-κB by a selective inhibitor, BAY 11-7082 suppressed cyclin D1 downregulation by EAFAD-B. From these results, we suggest that EAFAD-B-mediated cyclin D1 downregulation may result from proteasomal degradation through its threonine-286 phosphorylation via ERK1/2-dependent NF-κB activation. The current study provides new mechanistic link between EAFAD-B and anti-cancer activity in human colon cancer cells.
        120.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        The flower buds of Sophora japonica L (SF), as a well-known traditional Chinese medicinal herb, have been used to treat bleeding-related disorders such as hematochezia, hemorrhoidal bleeding, dysfunctional uterine bleeding, and diarrhea. However, no specific anti-cancer effect and its molecular mechanism of SF have been described. Thus, we performed in vitro study to investigate if treatment of SF affects activating transcription factor 3 (ATF3) expression and ATF3-mediated apoptosis in human colorectal cancer cells. The effects of SF on cell viability and apoptosis were measured by MTT assay and Western blot analysis against cleaved poly (ADP-ribose) polymerase (PARP). ATF3 activation induced by SF was evaluated using Western blot analysis, RT-PCR and ATF3 promoter assay. SF treatment caused decrease of cell viability and increase of apoptosis in a dose-dependent manner in HCT116 and SW480 cells. Exposure of SF activated the levels of ATF3 protein and mRNA via transcriptional regulation in HCT116 and SW480 cells. Inhibition of extracellular signal-regulated kinases (ERK) 1/2 by PD98059 and p38 by SB203580 attenuated SF-induced ATF3 expression and transcriptional activation. Ectopic ATF3 overexpression accelerated SF-induced cleavage of PARP. These findings suggest that SF-mediated apoptosis may be the result of ATF3 expression through ERK1/2 and p38-mediated transcriptional activation.
        6 7