검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 169

        121.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the effect of co-carbon fillers on the electrical and mechanical properties of epoxy nanocomposites was investigated. The graphite nanosheets (GNs) and multi-walled carbon nanotubes (MWNTs) were used as co-carbon fillers. The results showed that the electrical conductivity of the epoxy nanocomposites showed a considerable increase upon an addition of MWNTs when GNs were fixed at 2 wt.%. This indicated that low content GNs formed the bulk conductive network and then MWNTs added were intercalated between the GN layers, resulted in the formation of additional conductive pathway. Furthermore, the flexural strength of the epoxy nanocomposites was enhanced with increasing the MWNT content. It was probably attributed to the flexible MWNTs compared with rigid GNs, resulted in the enhancement of the mechanical properties.
        3,000원
        122.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electromagnetic wave energies are consumed in the form of thermal energy, which is mainly caused by magnetic loss, dielectric loss and conductive loss. In this study, CNT was added to the nanocrystalline soft magnetic materials inducing a high magnetic loss, in order to improve the dielectric loss of the EM wave absorption sheet. Generally, the aspect ratio and the dispersion state of CNT can be changed by the pre-ball milling process, which affects the absorbing properties. After the various ball-milling processes, 1wt% of CNTs were mixed with the nanocrystalline base powder, and then further processed to make EM absorption sheets. As a result, the addition of CNT to Fe-based nanocrystalline materials improved the absorption properties. However, the increase of ball-milling time for more than 1h was not desirable for the powder mixture, because the ballmilling caused the shortening of CNT length and the agglomeration of the CNT flakes.
        4,000원
        123.
        2009.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigated the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with a thin layer of 1 wt% Al-doped ZnO using rf magnetron sputtering deposition. Morphological studies clearly revealed that the ZnO appeared to form beadshaped crystalline nanoparticles with an average diameter as small as 30 nm, attaching to the surface of the nanotubes. It was found that the NO gas sensing properties of the ZnO-CNT layered composites were dramatically improved over Al-doped ZnO thin films. It is reasoned from these observations that an increase in the surface-to-volume ratio associated with the numerous ZnO “nanobeads” on the surface of the CNTs results in the enhancement of the NO gas sensing properties. The ZnO-CNT layered composite sensors exhibited a maximum sensitivity of 13.7 to 2 ppm NO gas at a temperature of 200˚C and a low NO gas detection limit of 0.2 ppm in dry air.
        4,000원
        124.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a low temperature growth of high-quality carbon nanotubes on glass substrate using a local surface heating without heating damage to substrate was tried and characterized. The local joule heating was induced to only Ni/Ti metal film on glass substrate by applying voltage to the film. It was estimated that local surface joule heating method could heat the metal surface locally up to around 1200℃ by voltage control. We could successfully obtain high-quality carbon nanotubes grown at 300℃ by applying 125 V for joule heating as same as carbon nanotubes grown at 900℃.
        3,000원
        125.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The electrochemical deposition of Pt nanoparticles on carbon nanotubes (CNTs) supports and their catalytic activities formethanol electro-oxidation were investigated. Pt catalysts of 4~12nm average crystalline size were grown on supports bypotential cycling methods. Electro-plating of 12min time by potential cycling method was sufficient to obtain smallcrystalline size 4.5nm particles, showing a good electrochemical activity. The catalysts’ loading contents were enhanced byincreasing the deposition time. The crystalline sizes and morphology of the Pt/support catalysts were evaluated using X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The electrochemical behaviors of the Pt/support catalystswere investigated according to their characteristic current-potential curves in a methanol solution. In the result, theelectrochemical activity increased with increased plating time, reaching the maximum at 12min, and then decreased. Theenhanced electroactivity for catalysts was correlated to the crystalline size and dispersion state of the catalysts.
        3,000원
        126.
        2009.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thin films of single-wall carbon nanotubes (SWNT) with various thicknesses were fabricated, and their optical andelectrical properties were investigated. The SWNTs of various thicknesses were directly coated in the arc-discharge chamberduring the synthesis and then thermally and chemically purified. The crystalline quality of the SWNTs was improved by thepurification processes as determined by Raman spectroscopy measurements. The resistance of the film is the lowest for thechemically purified SWNTs. The resistance vs. thickness measurements reveal the percolation thickness of the SWNT film tobe ~50nm. Optical absorption coefficient due to Beer-Lambert is estimated to be 7.1×10-2nm-1. The film thickness for 80%transparency is about 32nm, and the sheet resistance is 242Ω/sq. The authors also confirmed the relation between electricalconductance and optical conductance with very good reliability by measuring the resistance and transparency measurements.
        4,000원
        127.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The excellent and characteristic capacitor performance of pure single-walled carbon nanotubes (SWNTs), which differ from conventional activated carbon electrodes, is reported. SWNTs with little bundling showed higher specific capacitance than activated carbons. High operating voltage can be expected for pure SWNTs without metal contamination and graphene edge structure.
        3,000원
        128.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanotubes, consisting of rolled graphene layer built from sp2 units, have attracted the imagination of scientists as ideal macromolecules and their unusual physical and chemical properties make them useful in the fabrication of nanocomposites, nano-electronic devices and sensors etc. In this account, the current status and prospect of carbon nanotubes is described with a special emphasis on the safety issue of carbon nanotubes. Even though many challenges to be solved remain, extensive and intensive efforts in both academy and industry will clear out those problems soon and finally enable carbon nanotubes to play a key innovative material of 21st century in numerous industrial processes.
        3,000원
        129.
        2009.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The electrocatalytic behavior of the PtCo catalyst supported on the multi-walled carbon nanotubes (MWNTs) has been evaluated and compared with commercial Pt/C catalyst in a polymer electrolyte membrane fuel cell(PEMFC). A PtCo/MWNTs electrocatalyst with a Pt:Co atomic ratio of 79:21 was synthesized and applied to a cathode of PEMFC. The structure and morphology of the synthesized PtCo/MWNTs electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. As a result of the X-ray studies, the crystal structure of a PtCo particle was determined to be a face-centered cubic(FCC) that was the same as the platinum structure. The particle size of PtCo in PtCo/MWNTs and Pt in Pt/C were 2.0 nm and 2.7 nm, respectively, which were calculated by Scherrer's formula from X-ray diffraction data. As a result we concluded that the specific surface activity of PtCo/MWNTs is superior to Pt/C's activity because of its smaller particle size. From the electrochemical impedance measurement, the membrane electrode assembly(MEA) fabricated with PtCo/MWNTs showed smaller anodic and cathodic activation losses than the MEA with Pt/C, although ohmic loss was the same as Pt/C. Finally, from the evaluation of cyclic voltammetry(CV), the unit cell using PtCo/MWNTs as the cathode electrocatalyst showed slightly higher fuel cell performance than the cell with a commercial Pt/C electrocatalyst.
        4,000원
        130.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, the hydrogen storage behaviors of carbon nanotubes (CNTs)/metal-organic frameworks-5 (MOF-5) hybrid composites (CNTs/MOF-5) were studied. Hydrothermal synthesis of MOF-5 was conducted by conventional convection heating using 1-methyl-2-pyrrolidone (NMP) as a solvent. Morphological characteristics and average size of the CNTs/MOF-5 were also obtained using a scanning electron microscopy (SEM). The pore structure and specific surface area of the CNTs/MOF-5 were analyzed by N2/77 K adsorption isotherms. The capacity of hydrogen storage of the CNTs/MOF-5 was investigated at 298 K/100 bar. As a result, the CNTs/MOF-5 had crystalline structures which were formed by hybrid synthesis process. It was noted that the CNTs/MOF-5 can be potentially encouraging materials for hydrogen adsorption and storage applications at room temperature.
        3,000원
        131.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We measured the degree of macrodispersion of the various single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) using UV-VIS-NIR absorption spectroscopy. CNTs were dispersed with SDS of 2 wt % in deionized water using the homogenizer and then were further centrifugated at 6000 g for 10 min. The degree of macrodispersion, expressed by Dm(λ)=Aa(λ)/Ab(λ)*100 (%), where λ is the wavelength and Aa(λ) and Ab(λ) are the absorbance of the sample after and before centrifugation, respectively. In the case of MWCNTs, we evaluated the degree of macrodispersion by the average degree of macrodispersion (Dm(λ)) between 1000 and 1200 nm. The degree of macrodispersion of SWCNTs was evaluated at the wavelength in which van Hove singularity-related transition regions were excluded, i.e., the range was chosen between E11S and E22S peaks. We have estimated six samples with the same method. The standard deviation of each sample was lower than 5. Therefore, we presented a reliable evaluation method for the macrodispersion of CNTs for standardization.
        4,000원
        132.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We propose an evaluation method of the relative content of single-walled carbon nanotubes (SWCNT) in SWCNT soot synthesized by arc discharge using UV-VIS-NIR absorption spectroscopy. In this method, we consider the absorbance of semiconducting and metallic SWCNTs together to calculate the relative content of SWCNTs with respect to a highly purified reference. Our method provides the more reliable and realistic evaluation of SWCNT content with respect to the whole carbonaceous content than the previously reported method.
        4,000원
        133.
        2009.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, standardization trends related carbon nanotubes and international standardization activities in the ISO/TC229 and IEC/TC113 were introduced. The movement toward development of carbon nanotube standard began in the nanotechnology council under the IEEE in 2005. KATS has also run the carbon nanotube standardization committee to support commercialization of product containing carbon nanotube through standards since 2004. The Korean Standards such as KSD2711, 2712, 2717 were established.
        3,000원
        134.
        2009.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Multi-walled carbon nanotubes (MWNTs) were synthesized on different substrates (bare Si and SiO2/Si substrate) to investigate dye-sensitized solar cell (DSSC) applications as counter electrode materials. The synthesis of MWNTs samples used identical conditions of a Fe catalyst created by thermal chemical vapor deposition at 900˚C. It was found that the diameter of the MWNTs on the Si substrate sample is approximately 5~10nm larger than that of a SiO2/Si substrate sample. Moreover, MWNTs on a Si substrate sample were well-crystallized in terms of their Raman spectrum. In addition, the MWNTs on Si substrate sample show an enhanced redox reaction, as observed through a smaller interface resistance and faster reaction rates in the EIS spectrum. The results show that DSSCs with a MWNT counter electrode on a bare Si substrate sample demonstrate energy conversion efficiency in excess of 1.4 %.
        3,000원
        135.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A carbon nanotube (CNT) of diameter ~20 nm has been synthesized by spray pyrolysis of turpentine oil using Ni/Fe catalyst. Pellet of CNTs has been used as a target to produce semiconducting carbon thin film of band gap 1.4 eV. Presence of oxygen pressure in the pulse laser deposition (PLD) chamber helped to control the sp3/sp2 ratio to achieve the desired band gap. Results are discussed with the help of Raman spectra, SEM TEM micrographs and optical measurements suggest that semiconducting carbon thin film deposited by PLD technique has retained its nanotubes structure except that its diameter has increased from 20 nm to 150 nm.
        4,000원
        136.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A method for evaluating bulk sensitive structural characteristics of unpurified, as-purified, and acid treated single walled carbon nanotubes (SWNTs) was described in the present study. The optical spectra of SWNT solutions were well resolved after prolonged sonication and they were correlated to the diameter and the distribution of nanotubes. The acid-treated SWNTs were similar to as-purified SWNTs in terms of catalyst residue, radial breathing mode (RBM) in the Raman spectra, and the first band gap energy of semiconducting tubes in the optical spectra. The solution phase optical spectra were more sensitive to changes in the small diameter and metallic tubes after the acid treatment than were the RBM spectra.
        4,000원
        137.
        2007.12 구독 인증기관 무료, 개인회원 유료
        Single-walled carbon nanotubes (SWNTs)를 320 ℃에서 90분 동안 가열하여 비정질 탄소를 제거하고 남아 있는 금속 촉매를 제거하기 위해 염산에 24시간 처리하였다. 정제된 SWNT 표면에 산화반응을 통해 카복실기를 도입하였으며, 가혹한 환경으로 인해 길이가 짧아진 SWNT를 얻었다. 세정된 실리콘 웨이퍼를 3-aminopropyldiisopropylethoxysilane (3-APDIPES)의 톨루엔 용액에 담가 표면에 3-APDIPES의 자기 조립 단층막을 형성시켰다. SWNT의 카복실기와 3-APDIPES의 아미노기 사이의 산-염기 반응을 통해 생성되는 이온 사이의 정전기적 인력을 이용하여 실리콘 웨이퍼 표면에 SWNT를 배열하였다. Atomic Force Microscopy (AFM) 분석을 통해 반응시간과 농도에 따른 효과를 확인하였고, Transmission Electron Microscopy (TEM)을 이용해 산 처리 시간에 따른 효과를 확인하였다.
        4,000원
        138.
        2007.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon Nano Tubes could be either metallic or semi-conducting in nature, depending on their diameter. Its photocatalytic behavior has given an impetus to use it as an anti-microbial agent. More than 95% Escherichia coli and Staphylococcus aureus bacteria got killed when exposed to Carbon Nano Tubes for 30 minutes in presence of sunlight. Carbon Nano Tubes are supposed to have smooth surface on to which it accumulates positive charges when exposed to light. The surface that is non illuminated has negative charge. At the cellular level microorganisms produce negative charges on the cell membrane, Therefore damaging effect of multi walled carbon nano tubes (exposed to light) on the microorganisms is possible. In this paper, photo catalytic killing of microbes by multi walled carbon nano tubes is reported. Killing was due to damage in the cell membrane, as seen in SEM micrographs. Moreover biochemical analysis of membrane as well as total cellular proteins by SDS PAGE showed that there was denaturation of membrane proteins as well as total proteins of both the microbes studied. The killed microbes that showed a decrease in number of protein bands (i.e. due to breaking down of proteins) also showed an increase in level of free amino acids in microbes. This further confirmed that proteins got denatured or broken down into shorter units of amino acids. Increased level of free amino acids was recorded in both the microbes treated with multi walled carbon nano tubes and sunlight.
        4,000원
        139.
        2007.09 구독 인증기관 무료, 개인회원 유료
        Multi-walled carbon nanotube (MWNT)를 황산과 질산의 혼산(3:1)에 넣고 상온에서 ultrasonication 을 가해주어 MWNT의 표면에 산화반응을 통하여 카복실기를 도입하였다. 세정된 실리콘 웨이퍼를 3-aminopropylethoxysilane (3-APDIPES)의 톨루엔 용액에 담그어 실리콘 웨이퍼 표면에 3-APDIPES의 자기 조립 단층막을 형성하였다. 이 과정에서 실리콘 웨이퍼 표면에 형성된 3-APDIPES 자기 조립 단층막의 두께는 8 Å 이며, 이 단층막이 매우 견고하게 실리콘 웨이퍼 표면에 결합되어져 있음을 확인하였다. MWNT의 카복실기와 3-APDIPES의 아미노기 사이의 산-염기 반응을 통하여 생성되는 이온 사이의 정전기적 인력을 이용하여 실리콘 웨이퍼 표면에 MWNT를 배열하였다. 이 때 얻어지는 MWNT의 배향은 수직 배향이 아니라 수평 배향임을 atomic force microscopy (AFM)와 field emission-scanning electron microscopy (FE-SEM) 분석을 통하여 확인하였다.
        4,000원
        140.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of cobalt precursor on the structure of Co supported multi-walled carbon nanotubes (MWCNTs) were studied by using X-ray photoelectron spectroscopy (XPS). MWCNTs were treated with a mixture of nitric and sulfuric acids and decorated with cobalt and/or cobalt oxides via aqueous impregnation solutions of cobalt nitrate or cobalt acetate followed by reduction in hydrogen. XPS was mainly used to investigate the phase of cobalt on MWCNTs after reduction with H2 flow at 400℃ for 2 h. Higher cobalt-nanoparticle dispersion was found in the MWCNTS prepared via cobalt nitrate decomposition. A typical XPS spectrum of Co 2p showed the peaks at binding energy (BE) values equal to 781 and 797 eV, respectively. It is found that cobalt nitrate supported MWCNTs is more dispersive and have catalytic activity than that of cobalt acetate supported MWCNTs at same preparation condition such as concentration of precursor solution and reduction environment.
        4,000원
        6 7 8 9