검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 20

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the adsorption removal characteristic for 10 species of perfluoroalkyl and polyfluoroalkyl substances (PFAS) was investigated using GAC and modified GAC (GAC-Cu). After modification with Cu(II), the amount of copper was to 1.93 and 4.73 mg/g for GAC and GAC-Cu, respectively. The total amount of 10 species of PFAS per specific area was obtained to 0.548 and 0.612 ng/m2 for GAC and GAC-Cu, respectively. A series of batch test confirmed lower efficiency was observed with a smaller number of carbon chain length and the removal efficiency of PFCA (perfluoroalkyl carboxylic acids) was lower than that of PFSA (perfluoroalkyl sulfonic acids) with the same carbon chain length. Regarding the pH effect, the adsorption capacity was decreased with increase of pH due to the increase of electrostatic repulsion. According to pseudo first and second order (PFO and PSO) kinetic models, while the values of equilibrium uptake and time did not show significant difference, a difference in uptake was observed between 24-48h. Furthermore, based on correlation analysis, Log Kow and uptake have a high correlation with molecular weight (M.W.) and initial concentration, respectively. These results show that long-chain PFAS have higher removal efficiency due to their increased hydrophobicity.
        4,000원
        2.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Perfluorooctanoic acid(PFOA) was one of widely used per- and poly substances(PFAS) in the industrial field and its concentration in the surface and groundwater was found with relatively high concentration compared to other PFAS. Since various processes have been introduced to remove the PFOA, adsorption using GAC is well known as a useful and effective process in water and wastewater treatment. Surface modification for GAC was carried out using Cu and Fe to enhance the adsorption capacity and four different adsorbents, such as GAC-Cu, GAC-Fe, GAC-Cu(OH)2, GAC-Fe(OH)3 were prepared and compared with GAC. According to SEM-EDS, the increase of Cu or Fe was confirmed after surface modification and higher weight was observed for Cu and Fe hydroxide(GAC-Cu(OH)2 and GAC-Fe(OH)3, respectively). BET analysis showed that the surface modification reduced specific surface area and total pore volumes. The highest removal efficiency(71.4%) was obtained in GAC-Cu which is improved by 17.9% whereas the use of Fe showed lower removal efficiency compared to GAC. PFOA removal was decreased with increase of solution pH indicating electrostatic interaction governs at low pH and its effect was decreased when the point of zero charges(pzc) was negatively increased with an increase of pH. The enhanced removal of PFOA was clearly observed in solution pH 7, confirming the Cu in the surface of GAC plays a role on the PFOA adsorption. The maximum uptake was calculated as 257 and 345 μg/g for GAC and GAC-Cu using Langmuir isotherm. 40% and 80% of removal were accomplished within 1 h and 48 h. According to R2, only the linear pseudo-second-order(pso) kinetic model showed 0.98 whereas the others obtained less than 0.870.
        4,000원
        3.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1 h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.
        4,000원
        4.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Numerous chemical modifications on activated carbon such as acidic conditioning, thermal treatment and metal impregnation have been investigated to enhance adsorption capacities of micropollutants in water treatment plants. In this study, chemical modification including acidic, alkaline treatment, and iron-impregnation was evaluated for adsorption of 2,4-dichlorophenol (2,4-DCP). For Fe-impregnation, three concentrations of ferric chloride solutions, i.e., 0.2 M, 0.4 M, and 0.8 M, were used and ion-exchange (MIX) of iron and subsequent thermal treatment (MTH) were also applied. Surface properties of the modified carbons were analyzed by active surface area, pore volume, three-dimensional images, and chemical characteristics. The acidic and alkaline treatment changed the pore structures but yielded little improvement of adsorption capacities. As Fe concentrations were increased during impregnation, the active adsorption areas were decreased and the compositional ratios of Fe were increased. Adsorption capacities of modified ACs were evaluated using Langmuir isotherm. The MIX modification was not efficient to enhance 2,4-DCP adsorption and the MES treatment showed increases in adsorption capacities of 2,4-DCP, compared to the original activated carbon. These results implied a possibility of chemical impregnation modification for improvement of adsorption of 2,4-DCP, if a proper modification procedure is sought.
        4,200원
        5.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Prussian blue is known as a superior material for selective adsorption of radioactive cesium ions; however, the separation of Prussian blue from aqueous suspension, due to particle size of around several tens of nanometers, is a hurdle that must be overcome. Therefore, this study aims to develop granule type adsorbent material containing Prussian blue in order to selectively adsorb and remove radioactive cesium in water. The surface of granular activated carbon was grafted using a covalent organic polymer (COP-19) in order to enhance Prussian blue immobilization. To maximize the degree of immobilization and minimize subsequent detachment of Prussian blue, several immobilization pathways were evaluated. As a result, the highest cesium adsorption performance was achieved when Prussian blue was synthesized in-situ without solid-liquid separation step during synthesis. The sample obtained under optimal conditions was further analyzed by scanning electron microscope-energy dispersive spectrometry, and it was confirmed that Prussian blue, which is about 9.7% of the total weight, was fixed on the surface of the activated carbon; this level of fixing represented a two-fold improvement compared to before COP-19 modification. In addition, an elution test was carried out to evaluate the stability of Prussian blue. Leaching of Prussian blue and cesium decreased by 1/2 and 1/3, respectively, compared to those levels before modification, showing increased stability due to COP-19 grafting. The Prussian blue based adsorbent material developed in this study is expected to be useful as a decontamination material to mitigate the release of radioactive materials.
        4,200원
        6.
        2012.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        In order to enhance the selective adsorption of CO2, the surface of granular activated carbon (GAC) was modified by an ammonia solution. Ammonia in an aqueous phase could be decomposed into NH4+, OH- and other N-containing elements. The present work attempted to impregnate some basic functional groups leading to chemisorption of the activated carbon surface. While the addition of N-groups reduced the specific surface area from 2071.4 m2/g to about 1300-1400 m2/g, the adsorption capacity for CO2 increased to a certain degree, and the best amination could be achieved with the reaction at 100℃ for 12 hours. The enhanced adsorption capacity could be obtained by formation of nitrogen functionalities such as amine, pyrrolic groups and pyridine oxides which were verified by XPS analysis.
        4,000원
        7.
        2003.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        폐기물 용액의 pH 변화에 따른 고정층에서 우라늄 및 코발트 이온의 흡착거동을 다성분 흡착시스템으로 가정하여 이론적으로 예측하였다. 즉 pH 변화에 따라 존재 분율이 달라지는 각 이온 성분들이 상호 경쟁적으로 흡착한다는 가정 하에서, 평형실험에서 얻어진 결과와 우라늄 및 코발트 이온의 용액특성 (Solution chemistry)을 상호 결합하여 각 이온 성분들의 Langmuir 평형상수 값을 Ideal Adsorbed Solution Theory를 도입하여 구하였으며, 이상의 결과를 이용하여 고정층 파과곡선을 이론적으로 계산한 결과 pH 변화에 따른 흡착거동을 비교적 잘 예측할 수 있었다 따라서 본 연구에서 시도한 방법은 이온 농도와 pH가 높은 경우를 제외하고 pH 변화에 따라 용액 내에 이온의 형태가 다양하게 존재하는 흡착 시스템을 이론적으로 예측하는 데 비교적 유용하게 사용할 수 있을 것으로 판단된다.
        4,300원
        8.
        2018.11 KCI 등재 서비스 종료(열람 제한)
        The adsorption characteristics of bisphenol A (BPA) were investigated using activated carbon based on waste citrus peel (which is abandoned in large quantities in Jeju Island), denoted as WCP-AC, and surface-modified with various P2O5 concentrations (WCP-SM-AC). Moreover, coconut-based activated carbon (which is marketed in large amounts) was surface-modified in an identical manner for comparison. The adsorption equilibrium of BPA using the activated carbons before and after surface modification was obtained at nearly 48 h. The adsorption process of BPA by activated carbons and surface-modified activated carbons was well-described by the pseudo second-order kinetic model. The experimental data in the adsorption isotherm followed the Langmuir isotherm model. With increasing P2O5 concentration (250-2,000 mg/L), the amounts of BPA adsorbed by WCP-SM-AC increased till 1,000 mg/L of P2O5; however, above 1,000 mg/L of P2O5, the same amounts adsorbed at 1,000 mg/L of P2O5 were obtained. With increasing reaction temperature, the reaction rate increased, but the adsorbed amounts decreased, especially for the activated carbon before surface modification. The amounts of BPA adsorbed by WCP-AC and WCP-SM-AC were similar in the pH range of 5-9, but significantly decreased at pH 11, and increased with increasing ionic strength due to screening and salting-out effects.
        9.
        2015.11 KCI 등재 서비스 종료(열람 제한)
        The surface modified activated carbons (SMACs) were prepared with various P2O5 concentrations using two activated carbons (ACs: waste citrus peel-based activated carbon and coconut-based activated carbon). The characteristics and adsorptivity of bisphenol A (one of phenolic endocrine disrupting chemicals) were compared between ACs and SMACs. The contents of C, H and N of SMACs were similar to those of ACs, but the content of P2O5 for the former increased greatly than for the latter, due to the impregnation of P2O5 into the pores. The specific surface area, total pore volume, average pore diameter and iodine adsorptivity for the former decreased due to the impregnation of P2O5 into the pores, compared to those for the latter. The adsorptivity of bisphenol A for the former were higher than that for the latter, although specific surface area, total pore volume, average pore diameter and iodine adsorptivity for the former were lower than those for the latter.
        10.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 표면개질 활성탄을 이용하여 수용액상에서 혼합 중금속(Cr6+, As3+)의 흡착능을 평가하였고 또한 표면개질 활성탄을 안정화제로 활용하여 해양오염퇴적물 내 As 및 Cr에 대하여 중금속 안정화 실험을 수행하였다. 실험결과, 흡착평형은 약 120분 후에 도달하였다. 또한, 중금속 등온 흡착 특성은 Freundlich 및 Langmuir 방정식을 이용하여 해석하였으며, 평형흡착 실험결과는 Langmuir 모델에 잘 부합되었고 As3+ (28.47 mg/g)가 Cr6+ (13.28 mg/g)보다 평형 흡착량이 많았다. Cr6+인 경우, 용액의 pH가 6에서 10으로 증가함에 따라서 흡 착량은 감소하는 것으로 나타났다. 하지만 pH 증가 변화에서 As3+의 흡착량은 미미한 증가를 보였다. 안정화 방법은 오염퇴적물에 표면 개질한 활성탄 첨가 후 120일간 습윤 양생하였다. 연속추출 실험결과로부터, 미처리 오염퇴적물과 비교해서 Cr 및 As의 이온교환, 탄산염, 산화물 및 유기물 존재 형태 합의 비는 각각 5.8% 및 7.6% 감소하였다.
        11.
        2014.11 서비스 종료(열람 제한)
        매립가스는 유기물의 소화로 발생되는 복합성 가스이며 주성분인 메탄(CH4), 이산화탄소(CO2) 이외에 황화수소(H2S), 암모니아(NH3), 할로겐 탄화수소, 휘발성유기규소화합물(VMSs)을 포함한다. 매립가스의 구성물질 중 황화수소는 주요 악취물질로 반응성이강하며 휘발성유기규소화합물은 매립가스 내 불순물로 장치 부식의 원인이 될 수 있다. 따라서 매립가스의 효율적인 자원화를 위해서는 매립가스 내 황화수소 및 휘발성유기규소화합물의 전처리가 필요하다. 본 연구는 황화수소와 휘발성유기규소화합물의 전처리공정으로서 흡착공정을 개발하고, 우선 황산철용액으로 개질된 활성탄을 제조하고 개질 활성탄의 흡착특성을 평가하고자 하였다. 실험에 사용된 흡착제는 식물계 활성탄에 황산철(FeSO4・7H2O)용액으로 첨착하였다. 흡착 방법으로는 흡착제가 채워진 유리재질의 흡착관에(∅10×150 mm) 황화수소 및 휘발성유기규소화합물 중 D4를 질소(99.999%)와 함께 0.3 L/min으로 유입시켜 유출농도가 유입농도의 5%로 배출 될 때를 파과점으로 하여 측정하였다. 황화수소는 초기농도 1%에서 질소와 혼합하여 3,333 ppm으로 유입되었으며, 휘발성유기규소화합물인 D4는 650 ppm으로 유입되었다. 황화수소는 10 ppm까지 황화수소 센서를 이용하여 측정하였고 이후 GC-PFPD로 분석하였으며 휘발성유기규소화합물인 D4는 GC-FID를 이용하여 분석하였다. 개질된 활성탄의 비표면적은 1205.4 m²g-1로 비개질 활성탄의 비표면적인 1111.3 m²g-1 보다 큰 값을 보여주었다. 또한, 주사형 전자현미경 분석을 통해 입경크기 및 표면기공을 확인한 결과 개질된 활성탄의 표면기공이 1 μm 이하부터 8 μm 까지 다양하게 분포되어 있었다. 개질된 활성탄의 황화수소 및 휘발성유기규소화합물의 흡착능은 각각 0.256 g/g, 0.413 g/g으로 비개질 활성탄의 흡착능인 0.023 g/g에 비해 매우 높은 흡착능을 보여주었다. 개질된 활성탄의 첨착된 철에 의한 화학흡착과 제조과정에서 형성된 활성탄 표면의 관능기가 황화수소 및 휘발성유기규소화합물의 흡착에 영향을 주는 것을 판단된다.
        12.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        The adsorption experiments of lithium ions were conducted in the fixed bed column packed with activated carbon modified with nitric acid. Effect of inlet concentration, bed hight and flow rate on the removal of lithium ions was investigated. The experimental results showed that the removal and the adsorption capacity of lithium ions increased with increasing inlet concentration, and decreased with increasing flow rate. When the bed height increased, the removal and the adsorption capacity increased. The breakthrough curves gave a good fit to Bohart-Adams model. Adsorption capacity and breakthrough time calculated from Bohart-Adams model, these results were remarkably consistent with the experimental values. The adsorption capacity was not changed in the case of 3 times repetitive use of adsorbent.
        13.
        2011.02 KCI 등재 서비스 종료(열람 제한)
        Toluene desorption of modified activated carbon for microwave irradiation was evaluated. As a virgin GAC reacted from microwave energy, it created an "arcing" between GAC particles in desorption process. The arcing became more and more vigorous and achieved a red flame of GAC. The silica coated GAC(Si/GAC) was developed to prevent arcing phenomenon and temperature control problem. The result shows virgin GAC with 5wt%, 10wt% and 20wt% silica had no arcing and could control temperature very well. However, the adsorption rate of Si/GAC was decreased by coated silica amount due to decreasing surface area of GAC. The 5wt% Si/GAC adsorption rate was quite similar to virgin GAC adsorption rate. After adsorption, the toluene-loaded GAC and Si/GAC was reactivated by 2450MHz MW irradiation with 300W for 5 min. Quantitative desorption of the toluene was achieved at MW irradiation at 300W with desorption efficiencies as high as 98.59% to 84.65%% after four cycles.
        14.
        2008.08 KCI 등재 서비스 종료(열람 제한)
        The surface properties and adsorption rates of activated carbon modified with acid and base were compared. The distribution ratio of C and C-H on the surface of activated carbon were decreased by modification with acid and base, but the distribution ratio of C-O, C=O, and O=C-O were increased. Base modification damaged the surface of activated carbon more than acid modification, it caused the effect of 6 percent increments of surface area. Adsorption rate model was more suitable to second order equation than first order equation. Adsorption rate was controlled by adsorption in pore better than in surface.
        15.
        2008.05 KCI 등재 서비스 종료(열람 제한)
        The surface properties of activated carbon modified by acids and base were studied. The influence of the surface chemistry on the adsorption of benzene and acetone vapor on modified activated carbons has been investigated The modified activated carbons were obtained by treatment with acetic acid (CH3COOH), nitric acid (HNO3) and sodium hydroxide (NaOH). The modified activated carbons had similar porosity but different surface chemistry and adsorption characteristics. The total surface acidity (sum of functional groups) of activated carbon (AC-AN) treated by nitric acid was 2.6 times larger than that of activated carbon (AC) before the acid treatment. Especially, carboxyl group was much developed by nitric acid treatment. The benzene equilibrium adsorption capacity of AC-AN decreased 20% more than that of AC. However, the acetone equilibrium adsorption capacity of AC-AN increased 20% more than that of AC because of the large increase of carboxyl group and acidity.
        16.
        2008.05 KCI 등재 서비스 종료(열람 제한)
        This paper describes the adsorption/desorpton efficiency of a modified activated carbon by irradiated microwave to treat toluene. By employing microwave energy, the regeneration time was considerably shortened compared with conventional thermal heating regeneration. New adsorbent called ACB(Activated Carbon-Bentonite) was prepared from powder activated carbon with mixing bentonite as a binder. Specific surface area, average pore size and total pore volume of ACB were calculated from the nitrogen adsorption/desorption isotherm. The surface of ACB was characterized with scanning electron microscope(SEM). The results showed that the specific surface area, total pore volume, average pore size of ABC was not influenced by regenerating cycle with microwave irradiation. Toluene was adsorbed onto ACB which desorbed by MW irradiation. Absorption capacity of ACB was 0.117 gtoluene/ gACB. Desorption efficiency of toluene increased as higher microwave output was applied.
        17.
        2006.06 KCI 등재 서비스 종료(열람 제한)
        The purposes of this paper were to monitor the temperature rising courses and spark discharge of the modified granular activated carbon (GAC) by microwave (MW) irradiation and to evaluate absorption of benzene. The GAC coated on SiO2, boron, talc, ferrite was named as the modified GAC. Thermal and spark discharge measurement of virgin GAC and modifed GAC has been carried out using a MW device operating at 2450 MHz under various energy conditions. The results of this paper as follows. First, the modified GAC is more efficient than the virgin GAC in temperature control. Temperature gradient of the modified GAC is more lower than that of virgin GAC. The temperature gradient of GAC was observed in the following order : virgin GAC, Mn-Zn ferrite/GAC, Ni-Zn ferrite,/GAC, SiO2/GAC, Boron/GAC, Talc/GAC. Second, the spark discharge of the modified GAC was diminished, compared with that of virgin GAC. Because of its excellent electrical insulating properties, the coating material prevents the spark discharge. Finally, the benzene adsorption capacity of the modified GAC decreased due to diminishing of adsorption site by the coating material. Considering the temperature gradient and spark discharge of GAC, the GAC coated SiO2 would be appropriate absorbent under irradiation of MW.
        19.
        2003.09 KCI 등재 서비스 종료(열람 제한)
        For the purpose of surveying any possibility of anchoring titanium dioxide on activated carbons to promote their activities as catalysts and/or adsorbents, two activated carbons were oxidized with ammonium peroxydisulfate and followed by anchoring titanium dioxide. The anchoring of titanium dioxide on the oxidized activated carbons were performed via the adsorption of tetrabutyltitanate, hydrolysis with deionized water, and calcination. The effect of oxidizing and anchoring treatment on the surface element composition, surface area, and pore texture were analyzed by XPS, BET and TPD. The oxidation of activated carbons with ammonium peroxydisulfate introduced carboxyl groups on the surface of activated carbons and these carboxyl groups promoted the anchoring of titanium oxide on the activated carbons. However, the treatments affected the surface area and the porosity of activated carbons.