This paper presents the design, analysis, and experimental evaluations of precast reinforced UHPC (ultra high-performance concrete) beams with a new design concept of non-uniform flexural members. With outstanding mechanical properties of UHPC which can develop the compressive strength up to 200MPa, the tensile strengths up to 8~20MPa and the tensile strain up to 1~5%, a non-uniform structural shape of UHPC flexural beams were optimally designed using three-dimensional finite element analysis. The experiments were carried out and compared with the design strength in order to verify the performance of them. Proposed non-uniform UHPC beams were evaluated by a series of three-point beam loading test as well as estimated by design bending and shear strength of members. The newly designed UHPC beams show excellent performances not only in transverse load capacities but also in deformation capacities.
강도 한계상태 설계에서는 균열이 일어난 이후 철근콘크리트 부재의 인장영역에서 철근이 모든 인장력을 부담하는 것으로 가정한다. 그러나 균열 사이의 콘크리트가 실제 콘크리트 부재에서는 특히 사용하중 수준에서의 어느 정도의 인장 응력을 견디는데, 일조 하는 것으로 보고 있다. 이러한 효과를 Tension stiffening 효과라 한다. 본 연구에서는 Tension stiffening 모델과 고강도 철근 콘크리트 보의 휨 실험결과의 비교를 통해 해석모델의 유효성을 평가 하고자 한다. 이를 통해 선정 된 6가지의 Tension stiffening 모델과 실험에 의한 모멘트-곡률, 하중-처짐등을 관계를 평가하였다. 실험결과 설계기준에서는 ACI 318이 Tension stiffening 모델에서는 Owen & Damjanic이 실험 값과 가장 적은 오차율을 보이며 높은 신뢰도를 보였다.
Strength bar has merits in workability improvement, construction time shortening and connection details to be easy. But, lap splice length tends to be longer. In this study, high strength threaded bar will be reviewed whether it is appropriate in domestic standards by KCI concrete structural criteria and propose the mechanical splice.
건축 구조물이 초고층화, 대형화, 특수화 되어감에 따라 고강도 재료의 사용이 증대되고 있으며, 고강도 재료가 사용된 철근콘크리트 보의 전단강도를 타당하게 예측할 수 있는 해석모델이 반드시 필요하다. 본 연구에서는 고강도 철근이 사용된 철근콘크리트 보의 전단강도를 타당하게 예측할 수 있는 트러스 모델을 제안한다. 고강도 철근이 사용된 철근콘크리트 보의 전단강도에 대한 제안된 모델인 TATM의 타당성을 검토하기 위하여 총 107개 보의 실험결과를 수집하였으며, TATM 및 기존 트러스 모델의 전단강도 해석결과를 이들 실험결과와 비교하였다. 비교 결과, TATM은 다른 트러스 모델보다 실험결과를 더 잘 예측하였으며, TATM의 해석결과에 대한 실험결과의 비는 인장철근과 전단 철근의 항복강도에 거의 관계없이 일정하였다.
전편의 실험적 연구에 이어서, 기 수행된 4개의 외부 접합부 시험체에 현존하는 여러 강도 예측식을 사용하여 콘크리트 기둥-강재 보 접합부의 내진 성능을 결정하는 패널 전단 및 지압 강도를 평가하였다. 또한, 접합부 패널지역의 변형특성을 묘사할 수 있는 일련의 스프링을 사용한 macro 형태의 해석모델이 논의되었으며, 이에 따라 Drain-2DX 및 IDARC 등의 상용프로그램을 사용하여 접합부의 패널전단 및 지압 파괴형태의 변형을 포함하는 단순해석이 수행되었다. 강도 예측결과에 의하면 본 연구에서 제시하는 수정된 내부 콘크리트 패널 전단 강도식을 포함하고 있는 ASCE 방법이 실험결과에 가장 근접한 것으로 나타났으며, 본 연구에서 검토된 패널지역 변형을 고려한 단순해석모델은 향후 전체 건물해석에 사용할수 있는 것으로 판단되었다.
반복하중을 지지하는 4개의 2/3 크리 접합부 실험을 통하여 콘크리트 기둥 및 강재 보로 구성된 골조에 대한 외부 모멘트 접합부의 이력거동을 조사하였다. 주요 실험 변수는 접합부에 배치된 후프근의 수, 콘크리트만의 전단강도 발현응ㄹ 유도한 접합부 상세, 강재 보 플랜지 상, 하부에 스터드 형태의 전단키를 사용한 상세 등이다. 실험 시 관측된 균열양상, 파괴형상 및 다양한 계측결과에 근거하여 접합부 상세에 따른 각 시험체의 거동이 자세히 기술되었으며, 항복 후 보유강도, 강성저하 정도 및 에너지 소산능력 등이 분석되었다. 실험결과에 의하면, 이들 중 패널 및 인접 기둥 영역에 각각 2개의 후프근을 갖는 시험체 (CF3) 가 가장 우수한 이력응답을 나타냈으며, 이러한 형태의 접합부 상헤는 우리나와 같은 약진 지역에 적합할 것으로 판단되었다.
최근 지진의 발생 빈도가 잦아지면서 고강도 내진 철근에 대한 관심이 급증하였다. 그러나 현재 콘크리트구조 학회기준 (2017)에서는 철근콘크리트 부재의 전단철근의 항복강도를 500MPa로 제한하고 있다. 이 논문에서는 이러한 설계기준항복강도 제한을 확장하기 위해 고강도 내진 철근을 사용한 철근콘크리트 보의 실험을 수행하였다. 실험에는 항복강도가 400MPa, 500MPa, 700MPa인 전단철근이 사용되었으며 전단철근의 배근간격을 변수로 하여 철근비에 따른 철근콘크리트 보의 전단거동을 비교하였다. 실험결과 철근량과 철근의 항복강도가 증가할수록 전단강도비가 감소하는 경향이 나타났다.
본 연구는 순환골재를 사용한 콘크리트의 활용증대 방안으로 철근콘크리트 구조물의 노후화와 내구성 저하 시 보수․보강으로 사용되는 FRP (AFRP, CFRP) 판으로 보강된 순환골재 고강도콘크리트(40MPa, 60MPa) 보를 제작하여 순환골재 철근콘크리트 보의 휨 보강에 대한 적용성을 평가하고자 한다 기존의 표면매입보강에 따른 에폭시와 FRP 판의 부착력을 고려하지 않기 위해 콘크리트 타설 전 FRP 보강판을 거푸집에 미리 설치하였으며, 순환골재 치환율(30%), 콘크리트 강도(40MPa, 60MPa), 이형철근(D10, D13), FRP 판의 종류(AFRP 판, CFRP 판)를 변수로 12개 실험체를 제작하여, FRP 판과 순환골재 치환율에 따른 휨 성능을 분석하였다. 그 결과 FRP 판으로 보강한 실험체는 무보강 실험체에 비해 최대 17% 증가하는 경향을 나타내었으며 AFRP 판에 비해 CFRP 판의 보강 성능이 우수한 것으로 나타났다. 또한 순환골재 치환율에 따른 보강 성능의 차이는 없는 것으로 나타났다. 실험에 의해 측정된 균열모멘트는 파괴계수를 이용한 결과 기준식과 비슷한 값을 나타났으며 휨 모멘트는 FRP 판을 보강한 일부 시험체가 KCI 2012와 ACI 440-2R에서 제시한 기준을 만족하지 못하는 것으로 나타났다.
본 연구에서는 양생조건이 다른 압축강도 90 MPa 수준의 고강도 콘크리트 부재의 휨거동 실험을 수행하였다. 실험변수는 정상 및 저온 양생 조건, 인장 철근량 및 콘크리트 압축강도 수준 등을 고려하였다. 8개의 보 부재를 제작하여 휨 실험을 수행하였으며 균열 간격, 하중-처짐 관계, 하중-변형률 관계 및 연성지수를 파악하였다. 실험결과는 철근량이 증가함에 따라 균열 개수는 증가하고 균열간격은 감소하는 경향 을 나타내며, 콘크리트 강도가 높을수록 균열개수가 줄어들기는 하지만 그 효과는 철근량보다는 상당히 작은 것을 알 수 있었다. 설계기준에서 제안된 평균 균열 간격 식과 비교한 결과, 실험결과가 제안식의 결과보다 약간 크게 나타났으나, 제안식은 콘크리트 강도 및 양생조건을 반영 하지 못하는 문제점이 있다. 정상 양생된 부재들의 연성지수는 3.36~6.74이며, 저온 양생된 부재들의 연성지수는 1.51~2.82으로 나타나, 저온 양생된 부재들의 거동은 정상 양생된 부재들에 비해서 연성도지수가 저감됨을 확인하였으며, 본 연구와 기존 연구의 연성지수를 비교한 결과, 고강도 콘크리트 부재의 연성지수는 선행연구의 보통강도 콘크리트의 연성지수 보다 크게 나타났으나, 더 구체적인 결과를 파악하기 위해서 는 추가연구가 필요하다고 판단된다.
This paper describes the experimental results for the structural performance of full-scale coupling beams with different reinforcement layout (diagonal and horizontal). For the reinforcements of the coupling beams, high-strength steel bars(SD500 and SD600) were used in order to improve workability and economic feasibility. The rigid steel frames and linked joints were used to maintain the clear span length (distance between both shear walls) of the coupling beam during the cyclic loading. Experimental results indicated that the diagonally reinforced coupling beam specimen could exhibit more ductile behavior compared to horizontally reinforced specimen. ACI318-14 code is applicable to design of coupling beam with diagonally reinforcement, however, that is overestimating the strength of horizontally reinforced coupling beam. It is remarkable that effective elastic stiffness values of both reinforcement details coupling beam significantly lees than ASCE 41-13.
이 논문의 목적은 압축강도 130 MPa급의 고강도 강섬유 보강 콘크리트 보의 휨거동 특성을 파악하는데 있다. 부피비 1.0%의 강섬 유와 철근비 0.02 이하의 철근으로 보강된 고강도 강섬유 보강 콘크리트의 휨거동 특성 실험결과를 제시하였다. 일반강도철근과 고강도철근 을 실험 부재에 사용하였다. 강섬유 보강 콘크리트의 압축 및 인장거동 재료 실험과 모델링을 수행하였다. 강섬유 보강 콘크리트의 하중-균열 개구변위 실험결과를 반영하여 가상균열모델에 근거한 역해석을 통해 인장거동모델링을 제시하였다. 실험결과는 강섬유 보강 콘크리트와 고 강도철근의 사용은 균열제어 및 연성 거동에 유리한 것을 나타낸다. 일반강도철근을 사용한 보의 휨강도 실험값에 대한 수치해석에 의한 예측 값의 비는 0.81~1.42를 나타내고, 고강도철근을 사용한 보의 휨강도 실험값에 대한 수치해석에 의한 예측값의 비는 0.92~1.07을 나타낸다. 수 치해석에 의한 휨강도는 실험결과를 합리적으로 예측하고 있는 것으로 판단된다.
The research was introduced a newly atypical beam with ultra-high strength concrete. Ultra high strength concrete has compressive strengths up to 200MPa, tensile strengths up to 20 MPa and tensile strain up to 5%. A series of the developed beams was designed an irregular cross-section by precast and form-work technologies. They evaluated the flexural performance by experiment and analysis comparing with conventional reinforced concrete beams.
본 논문은 강섬유의 일부를 철근집합체로 대체하여 초고강도 섬유보강 철근 콘크리트 I 형보의 연성거동을 유도하는 것을 목적으 로 한다. 강섬유와 철근집합체의 조합을 가진 초고강도 콘크리트 I 형보 대한 휨거동 실험을 수행하였다. 강섬유의 혼입률은 0%, 0.7%, 1%, 1.5%, 2%이다. 철근집합체와 PS강연선 집합체가 압축구역에서 콘크리트를 구속하기 위해 사용되었다. 철근집합체와 강연선 집합체의 길이 도 실험요소 중 하나이다. 이러한 실험요소를 조합하여 9개의 초고강도 철근 콘크리트 I 형보를 제작하였다. 강섬유 뿐만 아니라 종방향의 철근 집합체도 초고강도 철근 콘크리트 I형 보의 연성거동을 유도하는데 효과를 가지고 있다. 강섬유 혼입률 0.7% 또는 1%와 철근집합체를 사용한 조합이 I형 보의 효과적인 연성 거동을 보여주고 있다. 하중과 처짐관계 및 균열양상 등이 좁은 간격을 가진 작은 직경의 종방향 철근 집합체의 유용성을 나타내고 있다.
본 논문은 강섬유 대신 철근집합체를 사용하여 초고강도 섬유보강 콘크리트 부재의 최대하중 이후 연성거동을 유도하는 것을 목적으로 한다. 강섬유와 철근집합체의 조합을 가진 직사각형 콘크리트 보에 대한 휨거동 실험을 수행하였다. 강섬유의 혼입률은 0%, 0.7%, 1%, 1.5%, 2%이고, 연성거동을 유도하기 위한 종방향 철근 집합체의 철근비는 0.0036, 0.016, 0.028 그리고 0.036이다. 이러한 실험 요소의 조합으로 15개의 초고강도 콘크리트보가 제작되었다.
강섬유 뿐만 아니라 종방향의 철근 집합체도 초고강도 콘크리트보의 연성거동을 유도하는데 효과를 가지고 있다. 강섬유 혼입률 0.7%와 철근비 0.028인 철근집합체를 사용할 경우 가장 경제적인 조합임을 볼 수 있다. 하중과 처짐관계, 콘크리트 응력의 변화 및 균열양상 등이 좁은 간격을 가진 작은 직경의 종방향 철근 집합체의 유용성을 나타내고 있다.
Ultra high strength concrete was introduced into architectural members. The current ultra high strength concrete can achieve compressive strengths up to 200 MPa and tensile strengths up to 20 MPa. In this study, the flexural and shear strengths in precast structural beams using ultra high strength concrete are evaluated and compared with reinforced concrete beams. This paper also provide a design flexural strength formula for the developed members.
이 논문은 고강도 콘크리트를 사용한 철근콘크리트 외부 보-기둥 접합부의 실험결과를 보고한 것이다. 실험체의 주요 실험변수는 접합부 파괴모드, 콘크리트 압축강도, 철근의 정착 방법이다. 모든 실험체는 ACI 352R-02 기준에 바탕을 두어 J파괴와 BJ파괴가 되도록 계획하였다. 주철근은 90도 표준갈고리로 하거나 확대머리철근으로 하였다. 실험결과는 콘크리트 압축강도에 제한되는 현행 ACI 설계 기준식이 고강도 콘크리트를 사용한 보-기둥 접합부의 강도를 다소 과소평가하고 있음을 보여준다. 또한 확대머리철근을 가진 J파괴형 보-기둥 접합부의 강도는 표준갈고리를 가진 접합부보다 약 10% 이상 높게 평가되었다.
In this study, the experiments were carried out in order that flexural behavior evaluated High-strength Concrete Beams reinfrced with FRP plates according ro replacement ration of recycled aggregate. As a result, maximum load was higher than existiong of unreinforced when the reinforced with FRP plates and no decrease in load about increased fo replacement ration of recycled aggregate. Some specimens was greater than ACI 440-2R referemce value.
사용하중상태에서 균열 사이의 콘크리트가 실제 콘크리트 부재에서는 어느 정도의 인장력을 부담하게 되는데 이를 tension stiffening effect라 한다. tension stiffening effect의 영향을 무시하면 균열이 발생한 콘크리트 부재의 해석에 있어 실제 거동과 다를 수 있기 때문에 균열 발생 후의 정확한 해석 및 거동의 평가를 위해서 tension stiffening effect는 반드시 고려되어야 한다. 본 연구에서는 tension stiffening effect를 기반으로 하는 6 가지의 tension stiffening 모델을 선정한 후 고강도 철근 콘크리트 보의 휨 실험과의 비교분석을 통해 tension stiffening 모델을 평가하였다. tension stiffening effect에 영향을 주는 주요 인자인 철근비를 변수로 하여 고강도 철근 콘크리트 보 시험체를 제작하여 휨 실험을 하였다. 이를 통해 tension stiffening 모델과 실험에 의한 모멘트-곡률, 하중-처짐 관계등을 평가하였다.