검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 33

        1.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 유기성 폐자원의 하나인 가축분뇨(우분)를 사용하여 고형연료화 가능성을 연구하고자 하였으며 생성물 제작 시 반탄화 방법을 이용하였다. 우분의 낮은 발열량을 개선하기 위해 첨가물을 사용하였으며 첨가물은 임업부산물인 톱밥과 계설성 폐기물인 낙엽을 사용하여 폐기물을 자원화 하고자 하였다. 반탄화 실험 진행 시 반응온도는 200-260℃까지 20℃씩 차이를 두어 생성물을 제작하였으며 반응 시간은 15분, 30분, 45분으로 나누어 생성물을 제작 후 실험 조건이 반탄화 생성물에 미치는 영향을 알고 자 하였다. 첨가물은 우분 대비 9:1, 8:2(우분:첨가물)의 비율로 섞어 시료 제작 후 반응생성물을 제작하였다. 본 실험을 통해 우리나라 고형연료제품 기준인 3,500 kcal/kg에 준하는 생성물을 얻을 수 있었으며, 첨가물을 추가하여 개선된 생성물을 얻을 수 있었다.
        4,300원
        2.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, Korea’s municipal wastewater treatment plants generated amount of wastewater sludge per day. However, ocean dumping of sewage sludge has been prohibited since 2012 by the London dumping convention and protocol and thus removal or treatment of wastewater sludge from field sites is an important issue on the ground site. The hydrothermal carbonization is one of attractive thermo-chemical method to upgrade sewage sludge to produce solid fuel with benefit method from the use of no chemical catalytic. Hydrothermal carbonization improved that the upgrading fuel properties and increased materials and energy recovery ,which is conducted at temperatures ranging from 200 to 350°C with a reaction time of 30 min. Hydrothermal carbonization increased the heating value though the increase of the carbon and fixed carbon content of solid fuel due to dehydration and decarboxylation reaction. Therefore, after the hydrothermal carbonization, the H/C and O/C ratios decreased because of the chemical conversion. Energy retention efficiency suggest that the optimum temperature of hydrothermal carbonization to produce more energy-rich solid fuel is approximately 200°C.
        4,000원
        4.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        The use of mechanical treatment (MT) for preparing solid refuse fuel (SRF) using municipal solid waste has been growing in Korea. One of the problems with using this treatment measure is the generation of residual waste from the MT, which will not be contained in the SRF. Most of this waste will be dumped into landfill instead of being used for the production of SRF. Much of the waste will be organic portions originating from food and biodegradable wastes. Consequently, the organic portion dumped into the landfill generates methane gas, which is a strong greenhouse gas. In this paper, the waste from MT was investigated directly at the MT facility located at Su-Do-Kwon landfill site to develop proper treatment measures to avoid disposing of the MT waste in landfill, which is prohibited in Germany and England.
        5.
        2017.05 서비스 종료(열람 제한)
        급속한 경제 성장과 함께 국내 하수처리 시설의 수는 증가하여 왔으며, 이로 인해 하수처리 시설로부터 발생되는 하수슬러지의 양도 꾸준히 증가하여 왔다. 2014년 기준 연간 발생량이 3,651,029 톤에 이르는 하수슬러지는 국제협약과 국내 법제도로 인해 해양투기와 직매립이 금지됨에 따라 이를 처리하기 위한 적절한 방법의 개발이 요구된다. 최근 하수슬러지 처리 방법을 살펴보면 전체 재활용되는 양의 43.8% (w/w)인 상당량의 하수슬러지가 건조 및 탄화의 방법을 통해 연료화 되고 있다. 하지만 슬러지의 경우 높은 함수율로 인해 건조 및 탄화 공정에 많은 양의 에너지가 소모되는 문제점이 있다. 이를 극복하기 위한 수단으로 슬러지에 함유되어 있는 수분을 열분해 반응에 이용할 수 있으며 비교적 낮은 온도에서 바이오매스의 탄화가 가능한 수열탄화가 많은 관심을 받고 있다. 본 연구에서는 슬러지의 수열탄화를 실시하고 생성된 바이오차를 이용하여 고형연료로서의 특성을 분석하는 한편 연료특성 개선을 위한 타 바이오매스와의 혼합처리 가능성을 확인하였다. 연구결과 180-270 ℃의 온도조건에서 생성된 바이오차는 모두 국내 바이오고형연료제품의 기준 발열량인 3,000 kcal/kg 보다 높은 4,000 kcal/kg 이상의 발열량을 보였다. 하지만 바이오고형연료제품 기준 중 회분함량에 대한 항목을 살펴보면 원시료 기준 29.11% (w/w)로 관련 기준인 15% (w/w)와 비교할 때 높았던 슬러지내 회분함량이 수열탄화 과정을 거치며 처리 온도에 따라 32.75-47.64% (w/w)로 오히려 증가하는 것을 확인할 수 있었다. 따라서 슬러지를 고형연료로 사용하기 위해서는 회분함량 개선을 위한 혼합물의 투입이 필요할 것으로 판단되었다. 이를 위하여 최근 대량 생산이 용이하여 차세대 에너지원으로 주목받고 있는 미세조류와의 혼합을 통한 연료특성 개선 가능성을 확인하였다. 미세조류의 경우 슬러지와 동일한 조건에서 수열탄화를 통하여 처리될 경우 회분함량이 1.29-2.96% (w/w)로 현저히 낮고, 발열량 또한 6,740 kcal/kg으로 높은 값을 보였다. 따라서 적절한 비율로 혼합된 슬러지와 미세조류의 수열탄화를 통한 처리 시 생성된 바이오차는 국내 바이오고형연료제품 기준을 만족할 수 있을 것으로 판단된다.
        6.
        2017.05 서비스 종료(열람 제한)
        오늘날 인구밀도의 증가와 산업 활동의 증가로 하・폐수처리장이 급속하게 증가하였고, 이에 따라 하・폐수슬러지의 발생량이 많아지고 이를 감량 및 처리하기 위한 연구 및 개발도 증가하는 추세이다. 고함수(함수율 80%)의 특성을 가지고 있는 슬러지에 대한 처리 및 에너지화는 이전부터 많이 진행되고 있으나, 고형연료화에 있어서 높은 에너지 소비비용을 줄이기 위해 수열탄화의 공정에 대한 연구가 활발히 이루어지고 있다. 2012년부터 런던협약에 의해 유기성폐기물의 해양투기가 금지되면서 하수슬러지 뿐만 아니라 가축분뇨, 음식물류폐기물 등이 육상처리 및 에너지화의 방향으로 진행되어야 할 것이다. 이에 본 연구에서는 유기성폐기물 종류에 따른 수열탄화의 반응특성변화를 평가하고, 수열탄화 반응물의 탈수성, 고형연료 생산수율, 발열량, 탈리여액의 메탄포텐셜 등을 평가하여 종류별 최적의 수열탄화 반응온도를 평가해보았다. 또한, 유기성폐기물 종류별 수열탄화 적용에 따른 고형연료 생산성을 평가하여 유기성폐기물별 연료화 가치를 판단해 보았다.
        7.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        It is projected that swine manure solids can be used for heating agricultural facilities. Therefore, this study focused on the possibilities of using swine manure as a solid fuel instead of composting it. Moisture content, ash content, volatile content, calorific value, TGA (thermogravimetric analysis), and elements in the swine manure were determined. After dehydrating the manure completely in a drying oven, its calorific value and ash content were measured. They appeared to be 3,517 kcal/kg and 16.6%, respectively, which satisfies the standard value of livestock solid fuel: heating value of 3,000 kcal/kg or above and ash content of 30% or below. Based on this result, it is concluded that using swine manure solids as a solid fuel is possible. Furthermore, when the chemical elements of C, H, O, N, S, Cl, etc. in the manure were analyzed, there was 33.75 ~ 45.98% of carbon and 31.55 ~ 41.20% of oxygen, which indicates that most of the manure was composed of combustible materials. However, there were cases where the percentage of water content in the manure exceeded 70%, implying that costs for dehydration would become expensive because it needs to be lowered to 20% in order to be used for energy source. Therefore, in order to use the swine manure as an energy source, minimizing the manure’s percentage of water content at the farm without any outside financial input is the biggest task to be solved.
        8.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        In recent years, waste-to-energy conversion using municipal solid waste (MSW) has been gaining attention in municipalities. Such conversion can reduce the dependency of non-renewable energy such as fossil fuels by generating solid refuse fuel (SRF) and diverting landfilling of the waste, although there is debate over the efficiency and economic aspect of the practice. With a growing interest in the conversion, D city is trying to adopt all possible measures towards achieving a material-cycle society by constructing a waste-to-energy town by 2018. The waste-to-energy town will be comprised of energy recovery facilities such as a mechanical treatment facility for fluff-type SRF with a power generation plant, and anaerobic digestion of food waste for biogas recovery. In this paper, we focus on estimating the energy recovery potentials and greenhouse gas (GHG) reduction of MSW by waste-to-energy conversion under three different scenarios. The data required for this study were obtained from available national statistics and reports, a literature review, and interviews with local authorities and industry experts. The lower heating value was calculated using the modified Dulong equation. Based on the results of this study, the energy recovery potential of MSW was calculated to be approximately 14,201-51,122 TOE/y, 12,426-44,732 TOE/y, and 8,520-30,673 TOE/y for Scenarios 1, 2, and 3, respectively. The reduction of GHG by such conversion was estimated to range from 10,074-36,938 tonCO2eq/y, depending on scenario. This study would help determine the production rate of fluff-type SRF to be converted into a form of energy. In addition, this study would aid waste management decision-makers to clarify the effectiveness of recycling of MSW and their corresponding energy recovery potentials, as well as to understand GHG reduction by the conversion.
        9.
        2015.07 KCI 등재 서비스 종료(열람 제한)
        Mechanical Biological Treatment (MBT), widely spread in Europe, is a process combined with mechanical separation and biological treatment. This is an alternative technology that can accomplish WtE (Waste-to-Energy) and landfill diversion. Bio-drying, aimed to produce high quality SRF, focused on removing moisture of waste through generated heat when biodegradable organic material is partially degraded by micro-organism. However, most of SRF production facilities in Korea consist of mechanical treatment. In those, 40% of input waste have been generated as residue disposed of in landfill. As a result of physico-chemical characteristic analysis of residue from target facilities, composition of food wastes, papers and plastics ranged 6.7 ~ 18.3%, 9.1 ~ 17.3%, and 5.8 ~ 12.2%, respectively. The moisture content of residue was about 43%, and low heating value was analyzed a range of 1,300 up to 1,900 kcal/kg. Results showed that combustible material having potential to produce SRF is discarded and the amount of biodegradable material such as food waste is still large. Therefore, we assumed it may cause pollution in terms of landfill gas emission and high concentrated leachate generation. In this study, recent trends of Bio-drying is discussed as the alternative technology to solve problems at SRF production facilities in South Korea.
        10.
        2015.05 서비스 종료(열람 제한)
        최근 선진국을 중심으로 자원고갈 및 기후변화에 대응하기 위하여 신재생에너지의 개발 및 생산에 많은 노력을 기울이고 있으며, 특히 폐자원으로 에너지를 확보하기 위한 정책을 적극적으로 추진하고 있다. 국내에서도 폐자원의 자원순환형사회 구축을 위해 폐자원의 에너지화를 위한 폐기물 연료화 시설(MBT, Mechanical Biological Treatment)을 설치하여 고형연료 즉, SRF(Solid Refuse Fuels)를 생산하기 위한 시설의 도입을 적극추진하고 있다. 유럽에서는 1990년부터 최근까지 300여개소의 MBT 시설이 설치 운영 중에 있으며, 초기에는 폐기물의 매립량 최소화 또는 매립지의 환경부하를 절감하기 위한 방법에서, 최근에는 SRF 생산 또는 에너지 회수가 주목적이 되고 있다. 국내에도 2015년 현재 수도권매립지 등 약 20여개의 생활폐기물 연료화 시설이 가동 및 계획 중에 있으나, 생물학적 처리공정(BT, Biological Treatment)이 결여된 MT(Mechanical Treatment) 위주의 공정으로 인해 고형연료로 회수할 수 있 수 있는 가연성물질의 상당부분이 잔재물로 배출되어 매립 또는 소각처리 되고 있다. 이에 본 연구에서는 국내 운영되고 있는 생활폐기물 연료화 시설을 대상으로하여 고형연료로 회수되지 못하고 배출되는 잔재물에 대한 공업분석, 원소분석, 발열량 등의 특성을 분석하여, 향후 이를 고형연료로 회수하는 공정을 개발하기 위한 자료로 활용하고자 한다.
        11.
        2014.11 서비스 종료(열람 제한)
        최근 고유가 시대를 맞아 신재생 에너지확보가 필요한 시점에 가연성 폐기물로부터 고형연료제품을 생산하여 대체연료로 활용하는 방안이 부상되고 있다. 폐기물을 에너지화하여 온실가스의 배출을 감소시키고, 온실가스 배출 감축량(CERs) 확보를 통한 국가 경쟁력을 높일 수 있다. 현 시점을 토대로 본 연구의 목적은 D군에서 발생되는 사업장 생활계폐기물의 질적 특성, 배출량 및 처리방법 등을 파악함으로써, 합리적인 폐기물 처리시설을 계획하기 위한 기초자료를 확보하는데 목적이 있다. 본 조사의 대상지역은 주거형태, 생활수준 그리고 당진군 사업장 생활폐기물 발생특성을 고려하여 도심 주거지역(공동주택1,2, 단독주택), 상업지역, 업무지역 등 대표성을 띠는 총 5개의 지역으로 나누었다. 본 조사에서 삼성분 분석결과, 함수율의 경우 공동주택지역 20.78%, 단독주택 19.58%, 상가지역 21.57%, 업무지역 12.66%으로 조사되었으며, 상가지역이 조금 높게, 업무지역에서 낮게 나타났다. 가연분 결과는 공동주택 53.58%, 단독주택 53.22%, 상가지역 50.55%, 업무지역 58.32%로 조사되었다. 회분조사 결과에는 공동주택 25.64%, 단독주택 27.20%, 상가지역 27.88%, 업무지역 29.02%로 나타났다. 4개 조사지점 평균 삼성분 함량은 함수율 18.65%, 가연분 53.92%, 회분 27.43%로 조사되었다. 발열량 분석결과, 고위발열량의 경우 공동주택 폐기물에서 4312.66kcal/kg, 단독주택 폐기물에서 2907.37 kcal/kg, 상가지역 폐기물에서 3554.10kcal/kg, 업무지역 폐기물에서 4477.81kcal/kg로 조사되었다. 저위발열량의 경우 공동주택폐기물에서 3675.31kcal/kg, 단독주택 폐기물에서 2643.32kcal/kg, 상가지역 폐기물에서 3554.10kcal/kg, 업무지역 폐기물에서 4108.32kcal/kg로 조사되었다. 4개 조사지점에서의 평균 고위발열량은 4015.27kcal/kg, 저위발열량은 4108.32kcal/kg으로 조사되었다. 입도분석 결과, 30mm이하인 폐기물은 전체의 평균 7.18%, 30~50mm은 16.06%, 50~80mm은 37.62%, 80~100mm은 16.92%, 100~200mm은 20.86%, 200mm 이상은 1.36%로 조사되었다. 5지역 모두 가장 많은 입도분포를 나타내는 부분은 50~80mm이고, 가장 적은 분포는 200mm이상에서 조사되었다. 평균 발열량은 환경부에서 지정한 고형연료제품의 등급기준 3,500~4,500kcal/kg인 4등급에 포함이 될 수 있는 수치를 보였다. 연료로의 기준치(6,000kcal/kg)의 및 석탄과 유사한 발열량을 보이기에는 부족한 점이 있어 발열량을 높일 수 있는 부분은 혼재하여 사용해야 할 것으로 사료되며, 입도분석의 결과 개괄적인 특성을 토대로 고형연료로서의 기준에 맞게 파쇄하여 성형을 해야 할 것으로 사료된다. 본 연구를 통해 폐기물 고형연료(RDF)의 제작에 있어 기초자료로 사용될 수 있을 것이라 사료된다.
        12.
        2014.11 서비스 종료(열람 제한)
        국내 폐자원 에너지분야에서 큰 비중을 차지하는 가연성 폐기물 에너지화는 주로 소각 여열회수와 고형연료생산을 통해서 이루어지고 있다. 고형연료화시설은 가연성 폐기물을 적정 가공하여 장기간에 걸쳐 보관이 쉽고, 운송이 용이, 매립량을 줄이는 점 등에서 많은 장점을 가지고 있다. 그러나 고형연료화시설에서 최종 공정을 거친 잔재물이 발생, 매립되고 있어 이를 개선하기 위한 연구가 필요한 것으로 판단된다. 본 연구에서는 고형연료화시설의 설계, 운영시 효율적인 바이오매스 관리를 위하여 국내 고형연료화시설 2곳을 선정, 각 공정에서 처리되는 가연물과 유기물 그리고 잔재물을 대상으로 물리・화학적 성상분석을 통하여 가연물 및 유기물의 흐름을 파악하였다. 또한, 발열량과 유럽표준시험방법인 SDM의 상관관계를 비교・분석함으로써 각 공정별 시료의 바이오매스 특성을 분석하였다. 연구 결과 육안 선별과 SDM의 상관관계는 높은 것으로 나타났으나 발열량과 SDM을 비교하였을 때에는 상관관계의 경향이 일정하지 않았다. 이는 각 공정별로 처리되어 혼합되는 가연물 및 유기물이 바이오매스 조건에 충족될지라도 성상이 상이함에 따라 차이가 나타나는 것으로 사료된다. 향후 국내와 해외 고형연료화시설간의 프로세스를 분석한 고찰을 통하여 공정에 따른 바이오매스 관리 기준을 모색할 필요성이 있다. 본 연구 자료는 바이오매스 특성을 고려한 고형연료화 시설의 설계, 운영에 기초 자료로 활용될 수 있을 것이다.
        13.
        2014.11 서비스 종료(열람 제한)
        전 세계적으로 경제활동이 증가함에 따라 자원과 에너지 소비가 확대되면서, 유가 급등과 같은 자원 위기와 기후변화로 대표되는 환경위기를 동시에 겪고 있다. 이에 따라 석유나 석탄과 같은 1차 에너지를 대체할 수 있는 신・재생에너지를 확대 생산・보급함으로써 에너지의 수입 의존율을 줄여나갈 실질적인 방안 마련이 진행되고 있다. 여러 종류의 신・재생 에너지 중에서 특히 폐기물의 에너지화는 화석연료를 대체하고 온실가스 발생을 줄임으로써 지구온난화로 인한 기후변화에 대응할 수 있는 유력한 수단으로 평가받고 있다. SRF(Solid Refised Fuel)란 생활폐기물에서 폐합성수지류, 폐종이류, 폐목재류 등과 같은 가연성 고체폐기물을 원료로 하여 수분과 불연성분을 제거하고 분쇄, 분리, 선별, 건조, 성형 등의 가공 공정을 거쳐서 제조되는 고형연료이다. 현재 대전광역시의 생활폐기물 배출량은 1,469ton/일(2012년 기준)로 그 중 약 66.5%는 재활용이 되고 있다. 그리고 2017년 자원순환단지 설립을 계획하고 있으며 폐기물의 재활용을 넘어 에너지 회수, 효율적 자원순환 체계 구축이라는 전략을 내세우고 있다. 본 연구는 신규로 조성될 대전광역시 자원순환단지와 연계하여 대전광역시 생활폐기물의 에너지화에 대한 잠재량을 산정하고 이에 따른 활용방안을 모색하는 것을 목표로 하고 있다. 연구결과, 대전시 생활폐기물의 저위발열량은 3,870~3,894kcal/kg 였으며, 고위발열량은 4,417~4,441kcal로 나타났고 에너지 잠재량은 연간 33,900 TOE을 상회할 것으로 예측되었다.
        14.
        2014.04 KCI 등재 서비스 종료(열람 제한)
        This paper examined energy consumption distribution by process and energy production-effect of MBT facilities inKorea. Generally, facilities that use fossil fuels for drying consumed energy about 70~80% in drying and exhaust gasestreatment process and energy distribution was heavily affected a position of drying and a kind of fuel. Energy production-effect by the ratio of input-energy to output-energy ranged from 4.54 to 9.60, however, if generation efficiency is reflected,it was standardized to low levels from 3.10~3.77. So we were able to confirm that the superiority of energy production-effect between facilities is not considerable.
        15.
        2013.03 KCI 등재 서비스 종료(열람 제한)
        Solid wastes are among the most pressing environmental and resource concerns in Korea. The Korean government has been implementing various management alternatives to reduce the production of solid wastes and recover valuable resources from them. Refuse-derived fuel (RDF) manufacturing facilities are one of projects that aim at recovering energy from solid wastes. This study used the emergy evaluation procedure to assess the feasibility of an RDF manufacturing facility in Wonju, Korea. By converting 10,442.6 tons of combustible solid wastes into 5,801 tons of solid fuel in 2007, this facility prevented the loss of useful resources with an emergy quantity of 3.70 × 1019 sej/yr. This amounted to a potential worth of 7.04 billion emW/yr. Total emergy input required to produce 5,801 tons of RDF was 5.91 × 1019 sej/ yr with an emvalue of 11.3 billion emW/yr. The Wonju RDF manufacturing facility contributed more to the Korean economy beyond its investment cost as revealed by the emergy yield ratio of 2.67. Direct emergy benefits and costs of the RDF facility were calculated as 1.20 × 1010 emW/yr and 3.31 × 109 emW/yr, respectively, resulting in the net emergy benefit/cost ratio of 2.62. This indicates that the RDF facility was a feasible option for managing solid wastes for the city of Wonju in Korea. This study demonstrated the usefulness of the emergy concept and methodology in evaluating management alternatives for solid wastes in Korea.
        1 2