검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 37

        1.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Near infrared reflectance spectroscopy (NIRS) is widely used to assess the nutrient composition of forages. In forage, the leaf to stem ratio of alfalfa greatly affects its forage quality, with a high ratio of leaf indicated as high quality. This study aimed to evaluate the predictability of the alfalfa leaf-to-stem ratio and feed value using NIRS. Alfalfa hay was manually separated into leaves and stems by hand and the analysis samples were then made in the controlled range between 0 and 100%. Calibration models (n=320) were developed using modified partial least squares regression (MPLS) based on cross-validation. The optimal calibrations were selected based on the highest coefficients of determination in cross-validation (R2) and the lowest standard error of cross-validation (SECV). The prediction accuracy for the leaf-to-stem ratio (SECV, 5.95 vs. 5.71%; R2, 0.91 vs. 0.91) in alfalfa hay was comparable. For leaves, the standard error of calibration (SEC) was 4.94% (R2=0.94), and for stems, it was 4.81% (R2=0.94). The leaves and stems of the SEC were 4.94% (R2=0.94) and 4.81% (R2=0.94), respectively. The prediction accuracy for feed value, based on the leaf-to-stem ratio, predicted SECV values of 0.92% (R2=0.88) for crude protein (CP) content, 1.92% (R2=0.91) for neutral detergent fiber (NDF) content, 1.36% (R2=0.91) for total digestibility nutrient (TDN) content, and 9.86 (R2=0.81) for relative feed value (RFV). The results of this study demonstrate the potential of the NIRS method as a reliable tool for predicting the leaf-to-stem ratio of alfalfa hay, and show available techniques for routine feed value evaluation.
        4,000원
        2.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경동맥의 치료 초음파 자극이 뇌의 생리적인 작용에 미치는 영향은 여전히 연구가 필요한 상황이다. 이에 본 연구 에서는 치료용 초음파를 이용한 비침습적이고, 정량적인 열자극 기법을 이용하여 경동맥의 자극을 통해 뇌의 생리적 인 기능을 개선하고 건강한 뇌 기능을 유지할 수 있는 방법을 제안하고자 하였다. 건강한 20대 성인 남녀 27명을 대상으로 연구를 진행하였다. 바로 누운 자세에서 진단용 초음파를 이용하여 우측 총경동맥(right common carotid artery, CCA)의 자극 위치를 확인하고, 우측 목빗근(sternocleidomastoid muscle)에 치료 초음파 자극을 적용하였다. 치료 초음파 자극은 치료용 초음파를 이용하여 3MHz의 주파수에서 총 2가지 강도 (5W/cm2 and 10W/cm2)에서 각각 2분 동안 중재하였다. 근적외선분광법(near-infrared spectroscopy, NIRS)을 이용하 여 대뇌산소포화도(regional cerebral oxygen saturation, rSO2) 및 헤모글로빈(hemoglobin, Hb) 농도의 변화를 측정 하여 비교하였으며, 추가적으로 강도에 따른 중재 구간별 변화를 비교 분석하였다. 두피와 대뇌피질 사이(Shallow) 영역에서 rSO2는 강도에 따라서 서로 증감이 다르게 나타났다. 즉, 5W/cm2에서는 중재전과 비교하여 중재중과 중재후에 모두 감소하는 경향을 보였고, 10W/cm2에서는 모두 증가하는 경향을 보였지 만, 모두 통계적으로 유의한 차이를 보이지는 않았다. 반면, 대뇌피질(Deep) 영역에서는 중재중에서 강도와 상관없이 통계적으로 유의한 감소를 보였고(p = .001 for 5W/cm2; p < .001 for 10W/cm2), 중재중과 비교하여 중재후에는 다시 중재전의 상태로 회복되는 경향을 보였다(p = .016 for 5W/cm2; p = .012 for 1 0W/cm2). 옥시헤모글로빈 (oxyhemoglobin, HbO)의 변화는 5W/cm2 자극에서 중재중에서만 유의한 증가를 보였고(p = .036), 디옥시헤모글로 빈(deoxyhemoglobin, HbR)은 감소하는 경향을 나타냈지만, 유의한 차이를 보이지는 않았다. 10W/cm2 자극에서 HbO와 HbR이 모두 감소하는 경향을 보였지만, 유의한 차이를 보이지 않았다. 강도에 따른 변화는 Shallow 영역에 서 rSO2가 유의한 차이를 보였다(중재중, p = .023; 중재후, p = .022). 결론적으로 3MHz의 주파수와 5W/cm2와 10W/cm2 강도로 중재를 수행하게 된다면, 중재중에 Deep 영역의 rSO2 의 감소를 야기한다는 것을 볼 수 있었다. 10W/cm2의 강한 강도의 자극에서는 Shallow 영역에서 rSO2가 증가하고, Deep 영역에서는 감소하는 것을 보여주었다. 이는 강한 강도의 자극에 의해 내경동맥의 혈류 증가로 인한 대뇌피질 에서의 효과적인 자극이 아니라 외경동맥의 혈류 증가로 인하여 Shallow 영역에서의 혈류 공급의 과다로 인한 현상 이 나타난 것으로 보여 진다. 반면, 대뇌에서 HbO는 5W/cm2의 강도에서 증가하였고, 이는 전반적인 산소 공급량이 높아졌음을 의미한다. 이에 적절한 강도의 치료용 초음파 자극을 사용한다면 기존에 알려져 있던 뇌혈류의 개선을 통하여 뇌혈관 건강을 개선하는 기능과 더불어 대뇌의 생리적인 기능을 조절하여 뇌기능의 개선에 기여할 수 있을 것으로 보인다.
        4,000원
        3.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 메꽃과 6종의 식물에 대해 신속하고 비파괴적으로 분류하기 위해 근적외선 (Vis-NIR) 스펙트럼을 이용하였고 데이터의 전처리와 머신러닝 기술을 적용하였다. 전국적으로 분포하는 메꽃과 6종에 대해 야외에서 휴대용 분광기를 이용하여 판별하였다. 식물의 잎의 표면에서 400~1,075 nm의 근적외선 스펙트럼 (1.5 nm)을 수집하였 다. 수집된 스펙트럼 데이터는 3가지의 전처리와 raw데이터를 이용하였고 4종류의 머신러닝 모델을 적용하여 높은 판별 정확도를 확인하였다. 전처리와 머신러닝 모델의 조합을 통해 분석된 판별의 정확도는 43~99%의 범위로 분석되었고, standard normal variate 전처리와 support vector machine 머신러닝 모델의 조합에서 판별 정확도가 98.6% 로 가장 높게 나타났다. 본 연구에서 수집된 스펙트럼은 식물의 성장단계, 다양한 측정 지역 및 잎에서의 측정 위치 등과 같은 요인과 더불어 데이터 분석을 위한 조건으로 최 적의 전처리와 머신러닝 기술을 적용한다면 메꽃과 식물의 야외에서의 정확한 분류가 가능하고 이들 식물의 효과적인 관리와 모니터링에 활용할 수 있을 것으로 판단되었다.
        4,000원
        4.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Near infrared reflectance spectroscopy (NIRS) is routinely used for the determination of nutrient components of forages. However, little is known about the impact of sample preparation and wavelength on the accuracy of the calibration to predict minerals. This study was conducted to assess the effect of sample preparation and wavelength of near infrared spectrum for the improvement of calibration and prediction accuracy of Calcium (Ca) and Phosphorus (P) in imported hay using NIRS. The samples were scanned in reflectance in a monochromator instrument (680–2,500 nm). Calibration models (n = 126) were developed using partial least squares regression (PLS) based on cross-validation. The optimum calibrations were selected based on the highest coefficients of determination in cross validation (R2) and the lowest standard error of cross-validation (SECV). The highest R2 and the lowest SECV were obtained using oven-dry grinded sample preparation and 1,100-2,500 nm wavelength. The calibration (R2) and SECV were 0.99 (SECV: 468.6) for Ca and 0.91 (SECV: 224.7) for P in mg/kg DM on a dry weight, respectively. Results of this experiment showed the possibility of NIRS method to predict mineral (Ca and P) concentration of imported hay in Korea for routine analysis method to evaluate the feed value.
        4,000원
        5.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The aim of this study was to investigate the feasibility of discrimination 12 different cultivar of sorghum × sudangrass hybrid (Sorghum genus) seed through near infrared spectroscopy (NIRS). The amount of samples for develop to the best discriminant equation was 360. Whole samples were applied different three spectra range (visible, NIR and full range) within 680-2500 nm wavelength and the spectrastar 2500 Near near infrared was used to measure spectra. The calibration equation for discriminant analysis was developed partial least square (PLS) regression and discrimination equation (DE) analysis. The PLS discriminant analysis model for three spectra range developed with mathematic pretreatment 1,8,8,1 successfully discriminated 12 different sorghum genus. External validation indicated that all samples were discriminated correctly. The whole discriminant accuracy shown 82 ~ 100 % in NIR full range spectra. The results demonstrated the usefulness of NIRS combined with chemometrics as a rapid method for discrimination of sorghum × sudangrass hybrid cultivar through seed.
        4,000원
        7.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, whole crop rice samples were used to develop near-infrared reflectance (NIR) equations to estimate six forage quality parameters: Moisture, crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), Ash and relative feed value (RFV). A population of 564 whole crop rice representing a wide range in chemical parameters was used in this study. Undried finely chopped whole crop rice samples were scanned at 1 nm intervals over the wavelength range 680–2500 nm and the optical data recorded as log 1/Reflectance (log 1/R). NIRS calibrations were developed by means of partial least-squares (PLS) regression. The correlation coefficients of cross-validation (R2 cv) and standard error of cross-validation (SECV) for whole crop rice calibration were 0.98 (SECV 1.81%) for moisture, 0.89 (SECV 0.50%) for CP, 0.86 (SECV 1.79%) for NDF, 0.89 (SECV 0.86%) for ash, and 0.84 (SECV 5.21%) for RFV on a dry matter (%), respectively. The NIRS calibration equations developed in this study will be useful in predicting whole crop rice quality for these six quality parameters.
        4,000원
        8.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid and accurate method of evaluating some chemical compositions in forages. The objective of this study was to evaluate the potential of NIRS, applied to imported forage, to estimate the moisture and chemical parameters for imported hays. A population of 392 imported hay representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1 nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation(R2) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS predicted the chemical parameters with very high degree of accuracy. The R2 and SECV for imported hay calibration were 0.92(SECV 0.61%) for moisture, 0.98(SECV 0.65%) for acid detergent fiber, 0.97(SECV 0.40%) for neutral detergent fiber, 0.99(SECV 0.06%) for crude protein and 0.97(SECV 3.04%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of imported hay in Korea for routine analysis method to evaluate the feed value.
        4,000원
        9.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to explore the accuracy of near infrared spectroscopy(NIRS) for the prediction of moisture content and chemical parameters on winter annual forage crops. A population of 2454 winter annual forages representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation(R2) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS calibration model to predict the moisture contents and chemical parameters had very high degree of accuracy except for barely. The R2 and SECV for integrated winter annual forages calibration were 0.99(SECV 1.59%) for moisture, 0.89(SECV 1.15%) for acid detergent fiber, 0.86(SECV 1.43%) for neutral detergent fiber, 0.93(SECV 0.61%) for crude protein, 0.90(SECV 0.45%) for crude ash, and 0.82(SECV 3.76%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of winter annual forage for routine analysis method to evaluate the feed value.
        4,000원
        16.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to find out an alternative way of rapid and accurate analysis of chemical composition of permanent pastures in hilly grazing area. Near reflectance infrared spectroscopy (NIRS) was used to evaluate the potential for predicting proximate analysis of permanent pastures in a vegetative stage. 386 pasture samples obtained from hilly grazing area in 2015 and 2016 were scanned for their visible–NIR spectra from 400~2,400nm. 163 samples with different spectral characteristics were selected and analysed for moisture, crude protein (CP), crude ash (CA), acid detergent fiber (ADF) and neutral detergent fiber (NDF). Multiple linear regression was used with wet analysis data and spectra for developing the calibration and validation mode1. Wavelength of 400 to 2500nm and near infrared range with different critical T outlier value 2.5 and 1.5 were used for developing the most suitable equation. The important index in this experiment was SEC and SEP. The R2 value for moisture, CP, CA, CF, Ash, ADF, NDF in calibration set was 0.86, 0.94, 0.91, 0.88, 0.48 and 0.93, respectively. The value in validation set was 0.66, 0.86, 0.83, 0.71, 0.35 and 0.88, respectively. The results of this experiment indicate that NIRS is a reliable analytical method to assess forage quality for CP, CF, NDF except ADF and moisture in permanent pastures when proper samples incorporated into the equation development.
        4,000원
        17.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to determine the effect of mathematical transformation on near infrared spectroscopy (NIRS) calibrations for the prediction of chemical composition and fermentation parameters in corn silage. Corn silage samples (n=407) were collected from cattle farms and feed companies in Korea between 2014 and 2015. Samples of silage were scanned at 1 nm intervals over the wavelength range of 680~2,500 nm. The optical data were recorded as log 1/Reflectance (log 1/R) and scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with several spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation (R2 cv) and the lowest standard error of cross validation (SECV). Results of this study revealed that the NIRS method could be used to predict chemical constituents accurately (correlation coefficient of cross validation, R2 cv, ranging from 0.77 to 0.91). The best mathematical treatment for moisture and crude protein (CP) was first-order derivatives (1, 16, 16, and 1, 4, 4), whereas the best mathematical treatment for neutral detergent fiber (NDF) and acid detergent fiber (ADF) was 2, 16, 16. The calibration models for fermentation parameters had lower predictive accuracy than chemical constituents. However, pH and lactic acids were predicted with considerable accuracy (R2 cv 0.74 to 0.77). The best mathematical treatment for them was 1, 8, 8 and 2, 16, 16, respectively. Results of this experiment demonstrate that it is possible to use NIRS method to predict the chemical composition and fermentation quality of fresh corn silages as a routine analysis method for feeding value evaluation to give advice to farmers.
        4,000원
        20.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 근적외선분광법을 이용하여 우리나라에서 재배되고 있는 목초류 중 외형적 특성이 유사한 이탈리안 라이그라스, 페레니얼 라이그라스와 톨 페스큐 종자의 초종 판별 가능성을 검토하고자 수행되었다. 근적외선분광기를 이용하여 목초류 종자를 가시파장 대역대(680~1,099 nm), NIRS 파장 대역대(1,100-2,500 nm) 및 NIRS 전체 파장 대역대(680-2,500 nm)로 구분하여 스펙트라를 얻은 후 1차 미분과 8 nm gap으로 수 처리를 수행하였으며 부분최소자승(PLS) 회귀분석법을 통해 초종판별 검량식을 개발하고 판별 정확성을 검증하였다. 목초류의 초종판별 정확성은 가시파장대역에서 SECV 1.732, R2CV 0.96으로 가장 판별 정확성이 낮았으며 NIRS 전체 파장대역에서 SECV 1.182, R2CV 0.98로 가장 높은 판별 정확성을 나타내었다. 파장대역별 예측 정확성은 NIR 파장대역(1,100-2,500 nm)에서 교차검증오차(SECV) 1.319에서 예측 오차(SEP) 1.288로 낮아졌으며 가시영역대(680~1,099)는 SECV 1.732에서 SEP 1.749로 약간 높아졌다. Discrimination equation 분석법에 의한 NIRS 전체 파장대역별 목초류 초종의 판별 결과는 초종간에 판별 정확성의 차이가 크게 나타났으며 이탈리안 라이그라스의 ‘Hits’는 68%로 가장 낮았으며 페레니얼 라이그라스가 78%의 정확성으로 가장 높게 나타났다. 따라서 NIRS를 이용한 목초류 초종의 판별분석이 가능할 것으로 판단되었다.
        4,000원
        1 2