고속도로의 제한속도는 교통류, 운행 시간, 에너지 소비, 교통사고 발생률 등에 직접적인 영향을 미치는 중요한 요인이다. 제한속도 의 상향 조정은 운행 시간 단축과 경제적 이점을 가져올 수 있지만, 교통사고 위험성을 높일 수 있으며, 반대로 하향 조정은 사고율을 감소시킬 수 있으나 운행 시간 증가와 교통 혼잡을 초래할 수 있다. 이러한 상반된 영향으로 인해 제한속도 조정이 도로 안전성과 효 율성에 미치는 구체적인 변화를 분석하는 연구가 필요하다. 본 연구는 미시교통시뮬레이션 도구인 VISSIM과 SSAM을 활용하여 제한 속도 및 교통량 변화에 따른 고속도로 구간별 상충횟수를 분석하고, 위험성이 높아지는 구간을 식별하였다. 이를 통해 향후 단속지점 설정과 구간별 맞춤형 개선방안 마련에 실증적인 근거를 제공하고자 한다.
국토교통부는 2020년 '결빙 취약구간 평가 세부 배점표’에 따라, 전국의 고속국도와 일반국도를 대상으로 410개 구간의 결빙 취약구 간을 선정하였다. 그러나, 2021년 감사원의 결빙 취약구간 지정 적정성 감사 결과에서 감사원은 현재 지정ㆍ관리 중인 결빙 취약구간 및 결빙 취약구간 평가 세부 배점표의 적정성에 문제를 제기하였다. 이에, 국토교통부는 결빙 취약구간을 재지정하여 발표하였으나 그 에 대한 평가 및 지정 적정성 검증이 아직 이루어지지 않았다. 본 연구에서는 결빙 취약구간과 결빙사고 데이터의 위치정보를 수집하여 GIS(Geographic Information System) 데이터로 구축하고 맵핑(Mapping)하여 결빙 취약구간 내 결빙사고이력을 확인함으로서 결빙 취약구간의 결빙사고 예측성능을 평가하였다. 또한, 각 결빙 사고 발생지점에서 도로시설, 교통, 선형구조, 환경인자 데이터를 수집하여 분석한다. 이를 통해 결빙사고와 각 인자 간의 상관성을 파 악하고, 그 결과에 따라 결빙 취약구간 평가 세부 배점표의 평가항목 및 각 항목별 배점을 수정하고 보완함으로써 결빙 취약구간의 신뢰성을 제고한다.
정보통신기술(Information and Communication Technology)과 기존 교통수단의 융복합으로 수소자동차, 자율주행자동차 등과 같은 새로운 교통수단 등장으로 광역 이동과 같은 이동성이 향상될 것으로 기대되고 있다. 또한, 보다 빠른 광역 이동성 확보를 위해 BRT 전용차로 도입에 대한 논의가 계속되고 있으므로 본 연구는 BRT 전용차로 구간에서 자율주행자동차의 혼입률 및 대중교통 전환율에 따른 시나리오를 설정해 서비스수준 분석을 기반으로 잉여차로 발생 가능성을 확인하였다. 더불어, 미래교통량 증가와 자율주행 기술 의 발전이 BRT 전용차로 운영 구간에 미치는 변화를 분석해 도로의 자산가치 산정을 목적으로 하고 있다. 설정한 시나리오에서 도로 가 기능을 발휘할 수 있는 일정한 서비스수준(Level of Service, LOS)를 유지하는 자율주행자동차 혼입률 수준을 파악하였으며, A~F 의 6단계로 구분하여 결과를 도출하였다. 도로의 자산가치 산정방법은 국가회계기준에서 제시하고 있는 토지의 대체적 평가방법 4가 지 방법과 보다 객관성을 확보한 새로운 자산가치 평가방법을 준용하여 도로의 자산가치를 산정하였다. 분석 결과, 간선도로 서비스수 준을 통해 BRT 전용차로를 시행하면서 연속류 구간에서는 자율주행자동차 혼입률이 75%되는 경우 편도 3차로에서 편도 2차로로 1차 로 감소가 이루어져도 현재의 서비스수준을 유지할 수 있으며, 단속류에서는 자율주행자동차의 혼입률이 50%되는 시점에 편도 4차로 에서 편도3차로 1차로 감소 시 동일한 효과를 발휘할 수 있음을 확인하였다. 즉, 연속류 구간에서 자율주행자동차 비율이 75% 및 단 속류 구간에서는 자율주행자동차의 비율이 50%되는 시점에서 1차로에 대한 도로 자산가치가 발생할 수 있음을 알 수 있었다. 이와 같은 잉여차로는 보행약자를 위한 보행 공간 및 자전거도로, 개인형이동장치((Personal Mobility, PM)전용도로, 완충녹지 등의 완전도 로로 활용될 수 있음을 시사하고 있다.
전 세계적으로 실도로에서의 자율주행차 안전성능을 검증하고 자율주행 시스템 기술의 개발을 위해 다양한 실증을 수행하고 있다. 미국의 경우 캘리포니아, 오하이오, 애리조나 등 다양한 주에서 자율주행차의 실도로 테스트를 진행하고 있으며, 독일의 경우 페가수 스 및 이매진 프로젝트 등을 통해 자율주행 성능 및 협력 운행 테스트를 수행하였다. 그러나, 자율주행차의 주행 성능 측면의 평가에 국한되어 실증이 진행되고 있다는 한계가 존재한다. 실도로 환경에서 자율주행차는 비자율주행차, 보행자 및 자전거 등과 상호작용하 며, 다양한 도로 기하구조에서 주행안전성 저하 문제가 발생할 수 있다. 따라서, 본 연구에서는 혼재교통상황에서 자율주행차의 주행 안전성을 저하시키는 도로 기하구조를 도출하였다. 또한, 캘리포니아 Department of Motor Vehicles (DMV)에서 제시한 자율주행차 관련 사고자료 검토를 통해 유사한 도로 기하구조에서 발생할 수 있는 사고 유형을 검토함으로써 선제적인 대안을 마련하고자 한다. 시뮬 레이션 분석을 위한 자율주행차 거동구현의 경우 real-world automated vehicle data (AVD) 기반 주행행태 분석을 통해 VISSIM 파라미 터를 조정하였다. 위험구간 도출을 위해 평가지표를 선정하고 주행안전성 분석을 수행하였으며, 위험 구간의 도로 기하구조의 특성을 도출하였다. 마지막으로 위험구간의 도로 기하구조와 유사한 구간에서 발생한 실제 자율주행차 관련 사고 보고서를 검토함으로써 본 연구에서 도출된 위험구간의 도로 기하구조에서 발생할 수 있는 잠재적 사고 원인을 제시하였다. 본 연구의 결과를 통해 향후 자율주 행차의 실도로 도입을 위해 선제적인 대책을 마려하는데 기초자료로 활용될 수 있으며, 나아가 자율주행차 안전성 향상을 위한 경고 정보 서비스 개발, 정보 제공 인프라 설치 우선순위, 도로 기하구조 개선 사업에 활용할 수 있을 것으로 기대된다.
자율주행차량을 상용화하기 위한 노력이 계속되고 있으며, 완전 자율주행 교통 환경이 조성되기 전까지 자율주행차량과 일반 차량 이 혼재된 혼합교통류가 형성될 것이라 예상된다. 이러한 혼합교통류에서 자율주행차량과 일반 차량은 주행 행태가 다르므로 기존에 는 발생하지 않았던 사고 위험상황을 유발할 수 있으며, 따라서 자율주행차량의 도입에 따른 사고 위험상황을 사전에 파악하고 이에 대한 안전관리 전략을 마련할 필요가 있다. 이러한 안전관리 전략 수립의 첫 단계로 자율주행차량 도입 시 자율주행차량이 사고위험 상황에 처할 수 있는 취약 구간과 취약 상황을 정의해야 한다. 기존 연구의 경우 자율주행 취약 구간 및 취약 상황 정의를 위해 전문 가 설문 조사 방법을 사용하였으며, 자율주행차량 데이터 구득에 어려움이 있어 주로 시뮬레이션 분석을 진행하였다. 본 연구에서는 더 실질적이고 구체적인 자율주행 취약 구간과 취약 상황을 정의하기 위해 두 가지 출처의 데이터를 활용하였으며, 다양한 방법론을 적용하여 과학적이고 다각적인 분석 결과를 도출하였다. 세종시 자율주행 실증구간에서 수집할 수 있는 자율주행차량 주행 궤적 데이 터를 활용해서는 사고위험 판단 안전 지표를 기준으로 사고 취약 구간 및 상황을 정의하였으며, 캘리포니아 DMV 자율주행차량 사고 데이터를 활용해서 연관규칙 기법과 토픽 모델링을 적용해 자율주행 사고에 영향을 미친 주요 요인들과 요인들 간의 연관성을 분석하 였다. 최종적으로는 세종시 자율주행차량 데이터 분석 결과와 캘리포니아 DMV 사고보고서 결과를 종합하여 종합적인 자율주행 취약 구간 및 상황을 정의하였다. 향후 본 연구에서 정의한 자율주행 취약 구간과 취약 상황 및 본 연구의 방법론을 활용하여 미래 교통 시스템의 안전 관리 전략을 마련할 수 있으며, 도로 운영자와 관리자의 의사결정을 도울 수 있을 것으로 기대한다.
PURPOSES : The primary objective of this study is to analyze the relationship between the factors that affect traffic incident duration in the mainline, tunnel, and ramp segments of an expressway. In addition, this study derived the most suitable statistical prediction model based on various incident duration distributions. METHODS : South Korean expressway crash data for 11 years, from 2011 to 2021, were analyzed. The incident durations on the mainline, tunnel, and ramp segments were selected using the accelerated failure time model, which is a parametric survival analysis approach. RESULTS : The mainline segment showed that the incident duration increased during accidents, including guard pipe collisions, multivehicle collisions, and snowfall. In particular, collisions in a tunnel with shoulder facilities increase the incident duration, while decreasing the time in the ramp segment. CONCLUSIONS : The incident duration model for each segment type yielded the most accurate results when applying a log-logistic distribution.
PURPOSES : Traffic congestion on freeway generally occurs when the traffic volume exceeds the road capacity. Most traffic manuals *such as the Korean Highway Capacity Manual) present the highway capacity as approximately 2,000 units/hour. However, in the real world, freeway congestion occurs for various reasons, including unusual driver behaviors, physical road limitations, and large traffic volumes. Thus, the flow rate at a traffic breakdown can have a wide range of volumes. Therefore, using 5-min volume and speed data from the field, this study explores the stochastic features of traffic breakdowns on major urban freeways in Seoul.
METHODS : First, a breakdown point is defined by applying a wavelet transform to identify the sharp drop in the speed data near freeway bottlenecks. Second, based on the flow rate at and before a breakpoint, a survival analysis is performed to construct the probability distributions of the traffic breakdown. Log-rank tests are also conducted to verify the similarities of the distributions between freeways.
RESULTS : The analysis results confirm the stochastic features of the urban freeways in Seoul. Specifically, the freeways have typical S-shaped distributions of breakdown probabilities. However, the distributions rise steeply (exceeding a 50% of breakdown probability) at flow rates of 1,150 vphpl to 1,700 vphpl; this is lower than the general expectation.
CONCLUSIONS : The statistical differences in the probability distributions for freeways indicates that applying a general standard to every urban highway could raise problems. This study has a limitation in identifying the specific causes of traffic congestion owing to the by physical relationships between individual vehicles. An investigation if vehicle trajectory data should be conducted to examine these aspects in further detail.
PURPOSES : The purpose of this study is to perform traffic flow characteristics analysis for each point of the long-term work zones and to propose an estimated capacity method to support the establishment of traffic flow management strategies for the long-term work zones.
METHODS : The study explained the difference in traffic flow characteristics between the short-term and the long-term work zones, and estimated the capacity of the long-term work zones. The analysis data were collected from five points of long-term work zones of the twolane highway. And VDS and DSRC data were applied to validate data.
RESULTS : The characteristics of traffic flow at each measurement point in the long-term work zones showed some differences, among which the capacity was estimated as the starting point to be 1,200 pcphpl and the ending point, 1,400 pcphpl. The delay length was estimated by applying the queuing theory based on the capacity of the start point where the bottleneck starts. As a result of verifying the congestion length based on space diagram map analysis, it was determined that the capacity calculation value and estimation methodology presented in this study were appropriate.
CONCLUSIONS : The long-term work zones are mixed with different characteristics of roads, so as the capacity values depending on the analysis location. Therefore, it is necessary to select analysis points and methodologies for estimating capacity and delay depending on the purpose of the analysis, such as estimating the maximum queue length or analyzing the maximum travel time. Through this study, it is expected that by providing accurate information on congestion in advance, road users can detour to other roads, and construction officials can adjust the construction plan to minimize congestion in the construction section.