Military tanks and armored vehicles use tracks with excellent mobility in rough terrain, the transmission, a key component of tracked vehicle driving performance, performs shifting, steering and braking functions of tracked vehicles. There was concern about the deterioration of the driving performance of the tracked vehicle due to the occurrence of oil leakage in the output part of the transmission that rotates the track of the vehicle. Throughㅇ failure mechanism analysis and characteristic factor analysis using 4M(Man, Machine, Material, Method) quality management, it was confirmed that the factor affecting oil leakage in the output part was damage to the output shaft coupling surface, which is the contact surface of the output part oil seal. Based on this, a quality improvement plan was derived by applying a protective cap to prevent damage to the coupling surface, increasing the coupling surface hardness to improve the oil seal sealing function, and revising the work standard throughout production, process movement and assembly stages. The effectiveness of the proposed improvement was verified through a single transmission test, a power pack test, and a track vehicle installation test, and the effectiveness was verified through follow-up observation. It is expected that the improvements derived from this study will be utilized in the future analysis of similar equipment quality problems.
본 연구는 다양한 차종의 승용 자동 변속기 변속 성능 및 내구성 평가를 위한 시험 장비 설계를 위하여 수행되었다. 다양한 차종의 주행 중 변속 특성을 시험 장비에서 구현하기 위하여 가장 작은 배기량을 갖는 차량과 가장 큰 배기량을 갖는 차량의 엔진 성능 곡선, 차량 총 중량, 총 기어비를 분석하였다. 분석된 결과를 바탕으로 하여 차량의 총 중량에 의한 관성이 변속기 후단에 전달되었을 때의 등가 관성을 각각 계산하였다. 다양한 차종의 엔진 관성과 성능 곡선을 만족시키기 위해서 입력 동력원은 정격 출력 440㎾, 정격 토크 146.7 kg·m, 관성모멘트 1.76 kg·m2으로 선정한 후 차종에 따라 3가지의 증속기(2.1:1~4.2:1)를 선택할 수 있으며 추가적인 기계 관성을 증속기 후단에 장착할 수 있도록 설계한다. 출력 동력원은 정격 출력 520㎾, 정격 토크 500kg·m, 관성모멘트 5kg·m2로 선정한 후 2:1 감속기와 추가적인 기계 관성을 장착할 수 있도록 설계한다. 다양한 차종의 자동 변속기 변속 특성 및 내구성을 간단한 장치 변경을 통하여 하나의 시험 장비에서 시험할 수 있는 방법을 대상 차량의 엔진 및 관성 정보를 분석하여 제안하였다. 이러한 시험 장비를 활용한다면 자동변속기 개발 및 성능 향상을 위한 비용 및 시간을 크게 절감할 수 있을 것이라 판단된다.
본 연구의 목적은 전후진 자동변속기가 장착된 트랙터의 변속 충격을 모사하기 위한 시뮬레이션 모델에 적용될 비례 제어 밸브의 전류 제어 모델을 개발하는 것이다. 전류 제어 모델을 개발하기 위하여 시험 장치를 구성하여 밸브의 정특성 시험과 계단 응답 시험을 수행하였으며, 시험 결과를 토대로 전류 제어 모델을 검증하였다. 비례 제어 밸브의 전류 제어 모델은 밸브의 전류-압력 선도, PID 제어기, 펄스폭변조 신호 발생기와 밸브 모델로 구성하였다. 전류 제어 모델에 사용된 데이터는 시험을 통하여 도출된 값과 대상 트랙터에 적용된 값을 사용하였다. 전류 제어 모델 검증을 위해 계단 입력 신호에 대하여 전류 특성 시험을 수행하였고, 실제 전류 시험 결과와 시뮬레이션 결과를 비교하였다. 시험 결과와 시뮬레이션 결과에 대한 전류 특성을 비교해 보면, 상승 시간 오차는 0.0074초, 첨두치 시간의 오차는 0.0065초, 오버슈트 오차는 0.06%로 나타났다. 따라서 개발된 비례 제어 밸브의 전류 제어 모델은 실제 제어기의 전류 제어 특성을 제대로 반영할 수 있으며, 추후 변속 충격 모사를 위한 트랙터 시뮬레이션 모델에서 비례 제어 밸브의 전류 제어 모델로 사용될 수 있을 것으로 판단된다.
The technology competitions of automobile manufacturers are getting hot. The characteristics of the environment friendly automobile are not only lowering the emission of harmful exhaust gas through the change of the power source, but also paying great attention to improvement of the power efficiency. As the market for pure electric vehicles continues to grow, we have analyzed the global technology competitiveness by DCT (Dual Clutch Transmission) patents. Clustering can be classified into five types ; 1) a cluster associated with a dual clutch transmission system, 2) a cluster of a torque transmission device and a reverse speed ratio, 3) a cluster of co-planar sets and dual clutch assemblies related to transmitting devices, 4) Device clusters, and 5) a cluster of synchronizers and clusters to prevent simultaneous operation of dual clutch transmissions. In recent years, demand for pure electric vehicles has been rapidly increasing, and patent applications related to DCT have been steadily increasing for energy efficiency of motor power sources.
In case of a low speed gearing in the automatic transmission, since the torque is increased, it is difficult to secure a good feeling on gear shift of transmission. It is possible to improve the shift feeling on transmission by applying a one-way clutch in case of the gear shift from the first stage to the second stage. But in case of the gear shift from the second stage to the third stage, it is difficult to secure a good feeling on gear shift of transmission because the hydraulic components are directly controlled simultaneously. In this study, a shift performance of an automatic transmission was investigated as a basic study to solve these problems. The subjects of this study are 2-3 step upshifting gearing process and the performance data such as the pressure characteristics and torque of the transmission according to the amount of the throttle valve opening are analyzed on basis of experiment with an actual vehicle. As a result, the transient time of the shift is closely related to the amount of the throttle valve, opening and the time point at which the shifting ends is shortened when the throttle valve opening reaches 30% of the opening amount.
Recently, as the use of automatic transmissions increases, attention is focused on remanufacturing of automatic transmissions. The automatic transmission includes a clutch, a brake, a planetary gear, and a planetary gear unit, which are power transmission devices, an oil pump and a valve body which are lubricating devices, a controller which is an electronic control device, sensors and switches which input and output the controller. In particular, this study is a basic study for remanufacturing such as disassembling, assembling, and inspecting element parts for manufacturing valve body material which is a core part of automatic transmission.
Today, conventional CVT equipped vehicle controls engine torque and gear ratio by using engine torque map and shifting map. But this control process is difficult to optimize the fuel economy when the driving mode is changed arbitrary. In this study, I propose the real-time CVT control with considering the power loss of transmission system to improve vehicle fuel economy and drivability. The driving performance and fuel economy of the proposed control logic is analyzed by backward simulation and the validity of new control logic is verified.
This paper suggests a specific model that could efficiently improve the interaction and the interface between MES(Manufacturing Execution System) server and PDA terminal through RFID(Radio Frequency Identification) system and bar-code system in automative transmission shipment place of the finished assembly parts. The proposed model shows that the new method by RF-Tag system can more efficiently perform to reduce processing time and loading time for shipment, compared with the current approach by bar-code system. It is noted in case of the method by RF-Tag that the effects of proposed model are as follows; (a) While the shipping lead time per truck for carrying by the current method was 35 minutes, the shipping lead time by the new method was 15 minutes. (b) While the accuracy for carrying by the current method was 50%, the accuracy by the new method was 99%.
In this study, new Continuously Variable Transmission(CVT) system which is adaptable to a small size electric vehicle is proposed available to gradient response CVT. New pulleys consist of springs adapted driving pulley and driven pulley. At the moment a small electric vehicle drive a slope, new system respond to a gradient as overcoming tensional force of springs. We made prototype of gradient response CVT to test parts performance. As a result of test, belt pitch diameter varied for high torque direction at the gradient.
Because of environmental and resource depletion issue, there is a growing interest in eco-friendly vehicle, especially electric car. The small electric city car, called "Micro Mobility" has gained in popularity because of generalization of households under two or less members. In this study, to improve mechanical characteristics of Micron Mobility, 2-speed planetary transmission is designed, manufactured, and its efficiency is verified.
Numerical analysis of a Ni-PZT stacked piezoelectric micro actuator is investigated for the prediction of mechanical behavior as a preceding research for the manufacturing of three dimensional micro structures. Finite element method is adopted to examine the simulation of a piezoelectric actuator according to applied direction of voltage, by researching displacement characterization of piezoelectric material through piezoelectric theory. PZT-4 is selected as a piezoelectric material. And bimorph finite element modeling is employed to study the response of Ni-PZT bi-layered micro actuator under the various input voltages. The results are presented as maximum displacement values under each applied voltages. Maximum displacement of 0.71μm at 60V is obtained
Dry CVT(Continuously variable transmission) consists of a driving pulley and a driven pulley joined by rubber V-belt. Each pulley consists of a fixed flange and a movable flange. The movable flange of the driving pulley has the centrifugal roller and a ramp plate in the flange. The movable flange moves toward a fixed flange under the actuation of a centrifugal roller, as the driving pulley speed increases. The main advantages of the Dry CVT with V-belt, which has been popular in Asia, are a simple mechanism, less maintenance and low cost. The important claim which have an influence on the performance of the Dry CVT is the wear of the centrifugal roller. In this study ball type is proposed instead of roller type of movable flange to resolve claim. Also experiments are carried out for new model to evaluate performances.
In general, a valve body of the automatic transmission(AT) is controlled by the clutch, the brake and lubricating oil flow in a hydraulic system and lubricant flow for each valve can be adjusted independently. To increase the lifetime of AT, the lubrication flow rate in a valve body for a 6 speed AT based parallel hybrid electric vehicle must be provided with proper oil distribution and control. In this study, we carried out several experiments without the inner parts of AT and with a AT assembly. The variation of the flow rate on oil temperature and pressure between an oil supply port and the outlets of the lubrication port was evaluated and analyzed. In the case of AT without the inner parts, it was evident that as the oil required for an operation of the clutch and brake was discharged from the outlet port, the flow rate from each lubrication port is decreased. However, the flow rate of the AT assembly was slightly increased. In addition, the lubrication flow rate was increased with increasing the oil temperature, and also it was reduced with increasing the oil pressure. Details of the resulting data are discussed.
Dry CVT(Continuously variable transmission) consists of a driving pulley and a driven pulley joined by rubber V-belt. Each pulley consists of a fixed flange and a movable flange. The movable flange of the driving pulley has the centrifugal roller and a ramp plate in the flange. The movable flange moves toward a fixed flange under the actuation of a centrifugal roller, as the driving pulley speed increases. The main advantages of the Dry CVT with V-belt, which has been popular in Asia, are a simple mechanism, less maintenance and low cost. The important claim which have an influence on the performance of the Dry CVT is the wear of the centrifugal roller. In this study proposed an improved design of driving pulley reducing the wear of the centrifugal roller in order to provide some design guidelines.
World Widely, a lot of gearboxes are being developed for the increase of fuel efficiency. Among them, CVT has an infinite gear and shifts gear at the best situation which makes it have no impact by changing speed and reduce the expense of fuel. We designed and manufactured 2ranked gearbox for V-belt similar to CVT. We studied an energy generated when it is functioning and had an experiment of forwarding power of it. These studies are planned to find out its functions and the efficiency of forwarding power of it.
Dry CVT(Continuously variable transmission) consists of a driving pulley and a driven pulley joined by rubber V-belt. Each pulley consists of a fixed flange and a movable flange. The movable flange of the driving pulley has the centrifugal roller and a ramp plate in the flange. The movable flange moves toward a fixed flange under the actuation of a centrifugal roller, as the driving pulley speed increases. The main advantages of the Dry CVT with V-belt, which has been popular in Asia, are a simple mechanism, less maintenance and low cost. The important claim which has an influence on the performance of the Dry CVT is the wear of the centrifugal roller. In this study proposed an improved design of ramp plate reducing the wear of the centrifugal roller in order to provide some design guidelines.
Dry CVT(Continuously variable transmission) consists of a driving pulley and a driven pulley joined by rubber V-belt. Each pulley consists of a fixed flange and a movable flange. The movable flange of the driving pulley has centrifugal rollers and a ramp plate in it. The movable flange moves toward a fixed flange under the actuation of a centrifugal roller, as the driving pulley speed increases. In this study, computer simulation for a driving pulley was carried out for the purpose of analysis a Dry CVT. Based on the simulation we investigated relations between each omponent of driving pulley that consists of roller, movable flange and ramp plate
The Automobiles with a combustion engine use a transmission for increasing drive force, reverse-move and maintaining non-load condition in general. In the Electric automobile system, output-axial can be operated just by controlling the motor manipulated with power. It also does not need reverse-gear by rotating the motor in the opposite direction. Designed to assemble two different types of planetary gear ratio and to be input torque of input-axial in sun gear and divide ring gear Ⅰ, Ⅱ and then after one of ring gear is fixed, in accordance with the planetary gear velocity ratio, the first gear has 0.136 decreased speed and second gear has 0.240 decreased speed, separately. While the planetary gear type transmission showed over the 92% of efficiency in the all of velocity range. The transmission proposed in this study can be expected to apply to the electric vehicle or others.