검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 137

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Asphalt concrete, which is used as a road base material, accounts for >90% of a road pavement. A huge amount of waste concrete and waste asphalt concrete aggregates are generated. Recently, carbon neutrality is promoted across all industries for sustainability. Therefore, to achieve carbon neutrality in the asphalt concrete industry, waste asphalt concrete aggregates should be recycled. Additionally, road base materials are prepared using additives to ensure structural stability, durability, and economic efficiency. In this study, recycled asphalt concrete aggregates were used to evaluate the physical properties of road base materials according to the type of polymer additive and mixing method, and the applicability of road base each material was evaluated. Results showed that when the acrylate-based polymer additive was mixed, the uniaxial compressive strength was 30% higher. Furthermore, the compressive strength of the split mix was improved by ~29% compared to the total mix.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The asphalt concrete industry, accounting for >90% of road pavement, is a crucial contributor to construction waste. This study focuses on the recycling of asphalt concrete recycled aggregates, which currently exhibits a low rate. We investigated the application of these aggregates, combined with hardener and mixing water, in the development of ecofriendly road base materials using circular aggregates. Results revealed that the 13-mm asphalt concrete recycled aggregates met all quality standards. However, the 25-mm aggregates did not conform to the reclaimed asphalt content standard; however, they met other quality standards. Moreover, the experimental results for the hardener and mixing water indicated compliance with all quality standards.
        4,000원
        3.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, the alkali aggregate reactivity and expansion characteristics of mortar mixed with waste glass (a recycled aggregate) were confirmed to verify the alkali-silica reaction (ASR) stability and review the appropriateness of the alkali aggregate reactivity test method following the replacement of recycled aggregate. METHODS : The alkali-aggregate reactivity of waste glass aggregates was measured using the chemical and physical methods described in KS F 2545 and ASTM C 1260, respectively. The reactivity was classified by comparing the results. Cement with a high-alkali content was used to simulate an environment that can induce ASR. Non-reactive fine aggregates, waste glass fine aggregates, reactive general aggregates, and Ferronickel slag aggregates were used as control groups. RESULTS : Waste glass fine aggregates were classified as reactive when applying the chemical method. In the physical method, they were classified as reactive at 100% and latent reactive at 1%, based on the mixing ratio. Additionally, we discovered that the reliability of the chemical method was low since the ASR of the aggregates was classified differently based on the evaluation method, while the results of the chemical and physical test methods were inconsistent. CONCLUSIONS : To determine the alkali reactivity of recycled aggregates, the complex use of chemical and physical methods and analysis based on the mixing ratio of the reactive aggregates are required. Small amounts of waste glass aggregate replacements affected the ASR. Because ASR reaction products can affect the long-term thermal expansion of the structure, further research is needed to use ASR aggregates in structures.
        4,000원
        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to identify a gradation control method that minimizes the volatility of recycled aggregates to maintain the quality of reclaimed asphalt mixtures. METHODS : In this study, two types (0~13 and 0~10 mm) of recycled aggregate stockpiles with an extraction viscosity of 40,000 poise and a 19 mm hot asphalt mixture with virgin aggregates are used. The test methods are evaluated for plastic deformation resistance using the Hamburg wheel-tracking test and for low-temperature crack resistance using the dynamic modulus test. In the field, the performance is evaluated via an accelerated pavement test. RESULTS : The Hamburg wheel-tracking test shows good water resistance as well as less than 5 mm of deformation. The result of a dynamic modulus test at -5 °C shows a 92.9% low-temperature crack resistance as compared with that of the 19 mm dense grade hot-mix asphalt mixture. The result of the accelerated pavement test confirms that the performances of the 19 mm dense grade hot-mix asphalt mixture and reclaimed asphalt mixture are equal owing a 1.2 cm plastic deformation. CONCLUSIONS : By evaluating the plastic deformation resistance and crack resistance of the reclaimed asphalt mixture based on a stockpile gradation controlled at 0~10 mm via an indoor test, it is discovered that the plastic deformation resistance increases partially, whereas the crack resistance remains almost unchanged. The accelerated pavement test confirms that a performance equivalent to that of a 19 mm dense grade hot-mix asphalt mixture is achieved.
        4,000원
        8.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        천연골재의 부족으로 골재 수급이 날이 갈수록 심각해지면서 재활용 가능한 재료에 대한 사회적 관심이 높아지고 있다. 하지만 국내에서는 선진외국에 비해 순환골재에 대한 연구데이터와 그를 사용한 현장 적용실정이 매우 부족한 실정이다. 본 논문에서는 현장에서 사용하는 레미콘 사의 가이드 배합에 순환골재를 전량 치환하는 배합비를 추출하여 압축강도를 평가하였 고 추출된 배합비의 순환골재 콘크리트를 원형강관 내부에 충전하여 순환골재콘크리트충전 합성기둥이 국내ㆍ국외 설계식을 반 영한 내력과 비교하여 구조부재로써 사용이 적합하다고 사료되는 결과를 얻었다. 또한, 강관의 콘크리트 구속효과로 인해 강관 내부의 콘크리트 강도가 미세하게 증가함을 확인하였다.
        4,000원
        11.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The recent increase in the application of reclaimed asphalt pavement (RAP) calls for more research focusing the evaluation of pavement performance. For this matter, this study aims at evaluating pavement performance using the application rate of RAP. METHODS: To obtain mixtures with RAP aggregate application rates of 10%, 25% and 30%, the gyratory compaction method was applied regarding the mix design process for determining the optimum asphalt content (OAC). Additionally, the in-direct tension (IDT) test, deformation strength test (DST), tensile strength ratio (TSR) test and dynamic modulus (DM) test were conducted to verify the effect of RAP application rate on pavement performance. Based on the above-mentioned results, performance evaluation was done to these RAP application of design or utilization to construction site. The performance evaluation analysis was performed using the Korean Pavement Research Program (KPRP) of second level for the pavement design. RESULTS: From the DST results, the rutting resistance was improved as the application rates of RAP were increased. Additionally, all the IDT and toughness results satisfied the quality standards of the asphalt concrete pavement. However, the results did not conform with the tensile strength ratio standards with the application rates of RAP of 25% and 30%. This means that the standards, which should be considered when the addictive regeneration material is applied to the mixture when the RAP application rate is over 25%, were reflected. CONCLUSIONS : The predicted performance decreased from the second level performance analysis with the increase in the RAP application rates. All the cases satisfied the design standards (fatigue cracking, rutting depth and international roughness index (IRI)). However, the results of them closed to these standards (up to 94% (Fatigue)).
        4,000원
        12.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The use of reclaimed aggregate has been recently increasing with the increase in the amount of waste asphalt concrete. The application of these materials can reduce the properties of the asphalt pavement when compared with the case when recycled aggregate is not used. The objective of this study is to evaluate the performance of the asphalt mixtures with various mix ratios of reclaimed aggregate. METHODS : To measure the performance, the following tests using the mixtures prepared in accordance with the Korea Standards were conducted: Hamburg wheel-tracking test, third-scale model mobile loading simulator test, and dynamic modulus test. RESULTS : The test results of the Hamburg wheel-tracking test indicate that the water resistance was similar in each mixture and the plastic deformation resistance was good in the high-ratio reclaimed aggregate mixture. In the case of the third-scale model mobile loading simulator test, the plastic deformation demonstrated a high resistance in the high-ratio reclaimed aggregate mixture. The results were similar to those of the Hamburg wheel-tracking test; however, the cracking resistance was poor with a high recycled aggregate incorporation ratio. The dynamic modulus test results demonstrated excellent resistance to plastic deformation at a relatively high ratio of reclaimed aggregate admixture. The crack resistance was weakened when a high ratio of reclaimed aggregate mixture was used. CONCLUSIONS: As the reclaimed aggregate content increased, the plastic deformation resistance increased and the crack resistance decreased.
        4,000원
        18.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The objective of this study was to evaluate the field applicability of chip seals using recycled aggregates by comparing performance between natural aggregates and recycled aggregates for chip seals. METHODS : In order to check the performance of chip seals using recycled and natural aggregates, Bitumen Bond Strength (BBS) test, Vialit and bleeding tests were carried out. Cationic emulsions (RS(C)-2 and latex modified RS(C)-2L) were used in the tests. Granite aggregates were used as the natural aggregate and recycled aggregate from road wastes were used as the recycled aggregate. The aggregate was used with uniform gradation between 10 mm and 4.75 mm to clearly compare the performance difference between natural and recycled aggregates. RESULTS : Test results showed that the aggregate retention was low for both natural and recycled aggregates when applying RS(C)-2 (unmodified emulsion), but there was almost no difference between them when applying RS(C)-2L and RS(C)-2L-1 (modified emulsion) in the Vialit test results. In the bleeding tests, there was no bleeding for both natural and recycled aggregates when applying RS(C)-2 and RS(C)-2L. CONCLUSIONS: It was possible to apply chip seals using recycled aggregates in the field because the chip seals with recycled aggregates and RS(C)-2L (modified emulsion) showed aggregate retention similar to that of natural aggregates, and there was no bleeding.
        4,000원
        19.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recycled aggregate is a solution to reduce construction waste and to be environmentally friendly, but concrete using it has various disadvantages in terms of structure. Therefore, the interaction effect of the two materials can be expected by filling the cyclic aggregate concrete in the CFT column. Eighteen specimens were constructed to confirm the compressive behavior of RCFT (Recylced Concrete Filled Tube) columns, which can be applied to real buildings by making high strength concrete with recycled aggregate. Variable is the shape and thickness of steel pipe, concrete strength and mixing ratio, and coarse aggregate and fine aggregate are all used as recycled aggregate. A total of three recycled aggregate concrete preformulations were used to find the optimal mixing ratio and the compressive behavior was analyzed through the load - displacement curves of RCFT columns.
        4,000원
        20.
        2018.04 구독 인증기관 무료, 개인회원 유료
        Concrete using recycled aggregate instead of natural aggregate reduces environmental waste and is a future oriented material. However, use of the structure is limited to negative recognition of recycled aggregate quality. In this study, 50 MPa concrete was developed using recycled aggregate. In order to verify the possibility of using as a column member, we aimed to confirm the compressive behavior of RCFT (Recycled Concrete Filled Tube) columns filled with concrete using recycled aggregate. Circular type steel pipe was used, and concrete strength (30, 40, 50MPa) and mixing ratio were the experimental parameters. Through 72 specimen compression tests, 50MPa strength of recycled aggregate concrete was confirmed and stable behavior of 9 RCFT columns was confirmed.
        3,000원
        1 2 3 4 5