PURPOSES : This study was conducted to evaluate the physical properties of the RAP 50 asphalt mixture containing polymer modified rejuvenator and warm-mix additive to improve the recycling rate of RAP and reduce CO2 emission. METHODS : Mix design of Polymer Modified Warm-mix Asphalt Mixture(RAP 50), and Hot Mix Asphalt Mixture(RAP 30) were produced and the properties of asphalt mixture such as Marshall Stability, ITS, Deformation Strength, TSR, and Dynamic Stability were compared between the two asphalt mixtures. RESULTS : The RAP 50 asphalt mixture showed superior or similar performances compared to the RAP 30 asphalt mixture in all the tests conducted. The results of the Marshall stability and dynamic stability in particular were 13,045N and 3,826 pass/mm, which were 11.37% and 76.7% greater than the RAP 30 asphalt mixture, which indicated that high plastic deformation resistance may be expected. CONCLUSIONS : The results obtained from laboratory tests on the two types of mixtures indicated that the use of polymer modified rejuvenator and warm-mix additive not only allows to increase the proportion of RAP but also improves its properties under lower temperature condition than RAP 30 asphalt mixture. Additionally, it was confirmed that plastic deformation resistance was high and moisture resistance and crack resistance were improved for a RAP 50 asphalt mixture.
PURPOSES : This study was conducted to compare and evaluate the compaction performance and physical properties of recycled asphalt mixtures by utilizing the characteristics of hot-mix asphalt mixtures and foamed asphalt.
METHODS : A wearing-course mixture was used for performance evaluations. Subsequently, dynamic shear rheometry (DSR), compaction performance, general physical properties, tensile strength ratio, and Hamburg wheel tracking were tested.
RESULTS : As a result of performance comparisons, compaction, and general physical properties satisfied the quality standards. In the Hamburg wheel tracking test, the mixture with the antistripping agent improved performance by approximately 40% compared with the general mixture. As the foamed asphalt binder was produced at a relatively low temperature compared with the general hot-mix asphalt binder, the penetration, viscosity, and DSR test results of the aged foamed asphalt binder showed that the aging of the asphalt binder was suppressed, and the flexibility increased. Therefore, the resistance to fatigue cracks is expected to be enhanced.
CONCLUSIONS : Even though the foamed warm-mix recycled asphalt mixture was produced at a temperature that was 20~30°C lower than the hot-mix asphalt mixture, its physical properties were similar to those of the hot-mix asphalt mixture; its use is expected to reduce the production of fuel and air pollutants.
PURPOSES : The objective of this study is to evaluate the feasibility of applying properties of asphalt binder other than absolute viscosity (AV) to evaluate the rejuvenation level of the binder from reclaimed asphalt pavement (RAP) in recycled asphalt mixtures (RAMs). METHODS : The G*/sin and critical temperature (CT) for determining high performance grade by DSR, and the large molecular size (LMS) using gel-permeation chromatography (GPC) were measured simultaneously with the AV of two virgin asphalt binders (58–22 for RAM and 64–22 for normal mix) and recovered binders from a RAP and four RAMs. Based on mix design, 20%, 30%, 40%, and 50% recycled RAMs were prepared, and the deformation strength (SD) of the RAMs were measured. The AV, LMS, G*/sin , and CT were measured from the recovered binders from each RAM of the SD-tested specimens. Regression analyses were performed between the LMS and AV, G*/ sin and AV, and CT and AV to determine the correlation of each property with the AV. The feasibility of evaluating the rejuvenation level of the RMA binder using the three properties (LMS, G*/sin , and CT) was evaluated. Regression analysis was performed between SD and AV, and the feasibility of using SD instead of AV ≤ 5,000 poise (p) was analyzed to evaluate the rejuvenation level of the RAM. RESULTS : The AV, LMS, G*/sin , and CT of RAM binders increased with the recycling ratio. Mixes with recycle ratios of 20% and 30% satisfied the AV ≤ 5,000 p criterion, unlike mixes with higher recycle ratios. The regression analysis results showed that the R2 values between the LMS and AV, G*/sin and AV, and CT and AV exceeded 0.96. Since these regressions showed extremely high R2 values, it can be inferred that the estimation of binder rejuvenation level using the LMS, G*/sin and CT, i.e., instead of the AV criterion, is applicable. Because SD exhibits high correlation with the binder stiffness, and the regression between SD and AV indicated R2 > 0.98, SD can be applied instead of the AV for binder rejuvenation level estimation. The main advantage of using the LMS and SD is to estimate the binder rejuvenation level without recovering the binder from the mix. CONCLUSIONS : For the binder rejuvenation level estimation of recycled mixes, it is concluded that the LMS by GPC and G*/sin and CT by DSR, and SD can be applied instead of the AV criterion. However, since this study was performed using limited materials, further studies involving many other materials may be performed to generalize the current conclusion.
PURPOSES : The purpose of this study is to identify a gradation control method that minimizes the volatility of recycled aggregates to maintain the quality of reclaimed asphalt mixtures. METHODS : In this study, two types (0~13 and 0~10 mm) of recycled aggregate stockpiles with an extraction viscosity of 40,000 poise and a 19 mm hot asphalt mixture with virgin aggregates are used. The test methods are evaluated for plastic deformation resistance using the Hamburg wheel-tracking test and for low-temperature crack resistance using the dynamic modulus test. In the field, the performance is evaluated via an accelerated pavement test.
RESULTS : The Hamburg wheel-tracking test shows good water resistance as well as less than 5 mm of deformation. The result of a dynamic modulus test at -5 °C shows a 92.9% low-temperature crack resistance as compared with that of the 19 mm dense grade hot-mix asphalt mixture. The result of the accelerated pavement test confirms that the performances of the 19 mm dense grade hot-mix asphalt mixture and reclaimed asphalt mixture are equal owing a 1.2 cm plastic deformation.
CONCLUSIONS : By evaluating the plastic deformation resistance and crack resistance of the reclaimed asphalt mixture based on a stockpile gradation controlled at 0~10 mm via an indoor test, it is discovered that the plastic deformation resistance increases partially, whereas the crack resistance remains almost unchanged. The accelerated pavement test confirms that a performance equivalent to that of a 19 mm dense grade hot-mix asphalt mixture is achieved.
PURPOSES : The use of reclaimed aggregate has been recently increasing with the increase in the amount of waste asphalt concrete. The application of these materials can reduce the properties of the asphalt pavement when compared with the case when recycled aggregate is not used. The objective of this study is to evaluate the performance of the asphalt mixtures with various mix ratios of reclaimed aggregate.
METHODS : To measure the performance, the following tests using the mixtures prepared in accordance with the Korea Standards were conducted: Hamburg wheel-tracking test, third-scale model mobile loading simulator test, and dynamic modulus test.
RESULTS : The test results of the Hamburg wheel-tracking test indicate that the water resistance was similar in each mixture and the plastic deformation resistance was good in the high-ratio reclaimed aggregate mixture. In the case of the third-scale model mobile loading simulator test, the plastic deformation demonstrated a high resistance in the high-ratio reclaimed aggregate mixture. The results were similar to those of the Hamburg wheel-tracking test; however, the cracking resistance was poor with a high recycled aggregate incorporation ratio. The dynamic modulus test results demonstrated excellent resistance to plastic deformation at a relatively high ratio of reclaimed aggregate admixture. The crack resistance was weakened when a high ratio of reclaimed aggregate mixture was used.
CONCLUSIONS: As the reclaimed aggregate content increased, the plastic deformation resistance increased and the crack resistance decreased.
최근 우리나라의 도로포장은 환경의 영향, 교통량의 증가 및 차량의 중량화 등 여러 요인에 의해 설계 수명에 이르지 못하고 조기에 노후화되어 이를 위한 유지보수가 빈번히 시행되고 있다. 유지보수로 인해 발생하는 폐아스팔트 콘크리트는 주요 건설폐기물로써 이에 대한 처리는 중대한 사회적 문제로 나타나고 있으며, 유지보수 시 공사구간 통제로 인한 차량지체현상으로 사용자비용이 발생하고 있다. 본 연구에서 는 이러한 현실적 문제를 극복하고자 폐아스팔트 콘크리트를 순환골재로 이용함과 동시에 개질 유화아스 팔트를 적용한 상온 긴급보수재료 개발에 대한 실험적 분석을 수행하였다.
개질 유화 아스팔트를 사용하여 상온에서 마샬 안정도 시험을 실시한 결과 순환골재(RAP)를 사용했을 때 신규골재(VA)를 사용했을 때 보다 1-2%의 바인더 절감 효과가 나타났으며, 성능이 더 우수함을 확인 할 수 있었다. 또한, 습윤 마모 시험을 통하여 순환골재(RAP)와 신규골재(VA)를 비교한 결과 순환골재 (RAP)의 마모저항성이 더 우수함을 확인할 수 있었다.
PURPOSES: The objective of this study was to determine the optimum ratio of mix design, for a reclaimed asphalt pavement (RAP) content of 100%, for spray injection application. METHODS: A literature review revealed that spray injection is an efficient and cost-effective application for fixing small defective regions of an asphalt pavement. Rapid-setting polymer-modified asphalt mixtures prepared from two types of rapid-setting polymer asphalt emulsion were subjected to Marshall stability and wet track abrasion tests, in order to identify the optimum mix designs. RESULTS and CONCLUSIONS : Different mix designs of type A and type B emulsions were prepared using RAP and virgin aggregates, in order to compare the performance and determine the optimum mix design. The performance of mixtures prepared with RAP was superior to that of mixtures containing virgin aggregates. Moreover, for optimum ratio of the design, the binder content prepared from RAP was set to 1~2% lower than that consisting of virgin aggregates. Compared to their Type A counterparts, type B mixtures consisting of a reactive emulsion performed better in the Marshall stability and wet track abrasion tests. The initial results confirmed the advantages associated with using RAP for spray injection applications. Further studies will be performed to verify the difference in the optimum mix design and performance obtained in the lab-scale test and tests conducted at the job site by using the spray injection machine.
PURPOSES : The purpose of this study was to evaluate the performance of rapid-setting polymer-modified asphalt mixtures with a high reclaimed asphalt pavement (RAP) content.
METHODS: A literature review revealed that emulsified asphalt is actively used for cold-recycled pavement. First, two types of rapid-setting polymer-modified asphalt emulsion were prepared for application to high-RAP material with no virgin material content. The quick-setting polymer-modified asphalt mixtures using two types of rapid-setting polymer-modified asphalt emulsion were subjected to the following tests: 1) Marshall stability test, 2) water immersion stability test and 3) indirect tensile strength ratio test.
RESULTS AND CONCLUSIONS : Additional re-calibration of the RAP was needed for laboratory verification because the results of analyzing RAP aggregates, which were collected from different job sites, did not deviate from the normal range. The Marshall stability of each type of binder under dry conditions was good. However, the Type B mixtures with bio-additives performed better in the water immersion stability test. Moreover, the overall results of the indirect tensile strength test of RAP mixtures with Type B emulsions exceeded 0.7. Further research, consisting of lab testing and on-site application, will be performed to verify the possibility of using RAP for minimizing the closing of roadways.
최근 국내외 아스팔트 포장산업에서의 중요한 이슈 중 하나로서 노후된 아스팔트 포장의 재활용 기술 과 중온 아스팔트 기술의 결합이라고 할 수 있다. 지금까지는 재활용 아스팔트의 사용비율이 일반적으로 전체 혼합물의 10~25% 정도로서 특별한 첨가제나 기술없이 사용되어 왔으나, 최근에는 재활용 아스팔트 사용비율을 50% 이상 증가시킴과 동시에 중온 아스팔트 기술을 적용하는 추세이다. 하지만, 재활용 아스팔트 기술과 중온 아스팔트 기술은 생산시 추구하는 온도범위가 서로 상이하므로 이에 따른 성능의 저하가 우려되고 있는 실정이다. 본 연구에서는 50% 이상의 고비율 재활용 아스팔트를 포함한 아스팔트 혼합물에 적용이 가능한 중온 아스팔트 기술을 개발하였다. 고비율 재활용 중온화 첨가제는 노화 아스팔트 성분 보완 물질, 중온화 물질, 그리고 순환 골재가 포함된 아스콘이 신 골재와 섞였을 때 골재간의 이질성을 극복하여 강한 결합을 유지하도록 도와주는 결합 보강제 등으로 구성되어 있다. 또한 수분에 대한 저항성을 향상시키기 위한 물질도 포함하고 있다.
본 연구에서는 이러한 고비율 재활용 중온화 첨가제를 50%의 재생골재를 사용한 혼합물에 적용하여 실 내실험을 수행하였다. 사용한 혼합물은 19mm 표층용 밀입도 골재구조에 AP5를 신규 아스팔트로 적용하였다. 또한 전체 혼합물의 50%를 최대입경 13mm의 순환골재로 사용하였다. 혼합물의 생산 및 다짐온도 는 가열 아스팔트 혼합물에 비해 30℃ 낮은 온도를 적용하였으며, 시편 제작시 골재 코팅과 다짐에 아무 런 문제가 발생하지 않았다. 실내실험으로 다양한 온도와 하중빈도에서의 동탄성계수를 측정하였으며, 시 간-온도 중첩이론을 이용하여 그림 1에서와 같은 동탄성계수 마스터곡선을 작성하였다. 비교군으로는 재생골재를 전혀 사용하지 않은 동일한 입도와 아스팔트 함량으로 제작된 가열 아스팔트 혼합물을 사용하였다. 실험결과, 고비율 재생 중온 아스팔트 혼합물의 시간-온도에 따른 점탄성 특성은 전범위에서 가열 아스팔트 혼합물과 거의 유사한 것으로 평가되었다. 이상과 같은 실험결과로부터, 본 연구에서 개발한 첨가 제를 50%의 순환골재를 사용한 중온 아스팔트 혼합물에 적용시 공용성능이 일반 가열 아스팔트와 유사할 것으로 예상할 수 있으며, 향후 추가적인 실내실험과 현장적용을 통해 성능을 검증하기 위한 연구를 지속적으로 수행할 예정이다.