벤조다이옥산 기능기를 갖는 새로운 이온성 폴리아세틸렌 유도체를 2-브로모메틸-1,4-벤조디옥산을 이용한 2-에티닐피리딘의 4차염화 중합법으로 합성하였다. 2-브로모메틸-1,4-벤조디옥산에 의한 2-에티닐피리딘의 4차염화 반응에 의해 먼저 생성된 단량체인 에티닐피리디늄 염은 별도의 촉매나 개시제 없이도 중합반응이 잘 진행되어 70% 수율로 원하는 이온성 폴리아세틸렌 유도체를 합성할 수 있었다. 여러 가지 분석장비를 이용하여 고분자 구 조를 분석한 결과 합성 고분자는 벤조디옥산 피리디늄 부분을 갖는 공액구조 고분자임을 확인할 수 있었다. 합성 공액구조 고분자는 메탄올, DMF, DMSO, NMP 등과 같은 극성 유기 용매에 잘 용해하었다. 이 고분자는 이온성 피리디늄 부분을 갖고 있는 특성으로, 공기 중에서 상대적으로 더 많은 흡습 특성을 보였다. 합성한 고분자의 전기 -광학적 및 전기화학적 특성을 측정하고 분석하였다. 비가역적 전기화학적 거동이 산화 피크와 환원 피크 사이에서 관찰되었다. 본 고분자는 피리디늄 치환기를 갖는 다른 폴리아세틸렌 유도체와 비슷하게 50 사이클까지 안정적인 산화환원 거동과 1.0V에서의 안정한 산화전류값을 나타내었다.
3-(2-브로모에틸)인돌을 사용한 2-에티닐피리딘의 4차염화 중합을 통해 새로운 이온성 폴리아세틸렌 유도체 를 합성하였다. 3-(2-브로모에틸)인돌을 사용한 2-에티닐피리딘의 중합은 균일하게 진행되었으며 비교적 높은 수율 로 중합체를 합성할 수 있었다(78%). 3-(2-브로모에틸)인돌에 의한 2-에티닐피리딘의 4차염화 반응에 의해 형성된 N-(3-에틸인돌)-2-에티닐피리디늄 브로마이드의 활성화된 아세틸렌 삼중 결합은 별도의 개시제나 촉매 없이도 중합 반응이 잘 진행됨을 알 수 있었다. 여러 가지 분석 장비를 이용하여 중합체의 구조를 확인한 결과 설계한 인돌 치 환기를 갖는 공액구조 고분자가 생성되었음을 확인할 수 있었다. 이 중합체는 DMF, DMAc, DMSO 등과 같은 극성 유기 용매에 잘 용해하였다. 중합체는 가시광선 영역인 457 nm에서 특징적인 흡수 피크, 600 nm에서 엣지 파장 을 보였다. 중합체의 사이클릭 볼타모그램은 산화와 환원 피크 사이에서 안정한 비가역적 전기화학 거동을 나타내 었다. 스캔 속도가 증가할수록 환원 전류량이 증가하였으며 주 환원 및 산화 피크는 -1.3 V 및 1.1 V에서 관찰되었 다.
To test a flameproof enclosure for the safety certificate, a reference pressure of explosion needs to be determined. However, the explosion pressure may be changed according to relative humidity of explosive gases. Therefore, the guideline on relative humidity should be recommended for measuring the explosion pressure for accurate and reproducible testings. This study examined the relationship of explosion pressure with relative humidity of hydrogen (31 vol %)-air and acetylene (14 vol %)-air mixture gases. The explosion pressures were measured by increasing the relative humidity of the gases by 10 % from dry state to 80 % in a cylindrical explosion enclosure of 2.3 L. on ambient temperature and atmospheric pressure (1 atm). The maximum explosive pressures were remained almost constant until the relative humidity reached 10 % for the hydrogen-air mixture and 20 % for the acetylene-air mixture. However, the maximum explosive pressures linearly decreased as the relative humidity increased. Based on the results of the study, it would be recommended to use 10 % relative humidity for the hydrogen-air mixture and 20 % for the acetylene-air mixture as the critical value in testing a flameproof enclosure.
In this work, the ablation behavior of monolith ZrB2-30 vol%SiC (Z30S) composites were studied under various oxy-acetylene flame angles. Typical oxidized microstructures (SiO2/SiC-depleted/ZrB2-SiC) were observed when the flame to Z30S was arranged vertically. However, formation of the outmost glassy SiO2 layer was hindered when the Z30S was tilted. The SiC-depleted region was fully exposed to air with reduced thickness when highly tilted. Traces of the ablated and island type SiO2 were observed at intermediate flame angles, which clearly verified the effect of flame angle on the ablation of the SiO2 layer. Furthermore, the observed maximum surface temperature of the Z30S gradually increased up to 2,200 °C proving that surface amorphous silica was continuously removed while monoclinic ZrO2 phase began to be exposed. A proposed ablation mechanism with respect to flame angles is discussed. This observation is expected to contribute to the design of complex-shaped UHTC applications for hypersonic vehicles and re-entry projectiles.
2-에티닐-N-노나노일피리디늄 클로라이드를 치환기로 갖는 새로운 폴리아세틸렌 유도체를 합성하였다. 반응초기에 2-에티닐피리딘과 노나노일 클로아이드의 4차염화반응으로 생성된 단량체 종인 2-에티닐-N-노나노일피리디늄 클로라이드 는 별도의 촉매 없이도 중합반응이 잘 진행되었으며, 그결과 89%의 수율로 폴리아세틸렌계 이온성 공액구조 고분자를 합 성할 수 있었다. 여러 가지 분석장비를 이용하여 고분자 구조를 분석한 결과 설계한 치환기를 갖는 폴리아세틸렌 유도체 가 합성되었음을 확인할 수 있었다. 본 고분자는 메탄올, DMF, DMAc, DMSO, NMP 와 같은 극성 용매에 완전히 용해하였 으며, 이온성 측쇄 부분을 갖는 특성으로 다루는 과정에서 공기중 수분을 흡수하는 경향이 강했다. 고분자의 광흡수 및 전 기화학적 특성을 측정하고 분석하였다. 본 고분자는 산화-환원 피크 사이에 비가역적 전기화학적 거동을 보였으며 다른 이 온성 공액구조 고분자의 경우와 유사하게 전기화학적 스캔수를 증가한 실험에서 50회까지도 안정된 산화-환원 거동을 보 였다.
3-부티닐-p-톨루엔술포네이트를 이용한 2-에티닐피리딘의 무촉매중합을 통하여 이온성 전도성 고분자를 합성하였다. 합성 고분자의 분자구조는 IR, NMR, UV-visible 분광분석기로 확인하였다. 공액구조 주사슬 고분자의 특징적인 π → π* 전이에 기인하는 약하면서도 완만한 흡수 피크를 800 nm까지 보여 주었다. 합성한 고분자의 전기화학적 특성과 전기광학 특성을 측정하고 분석하였다. 이 고분자는 도핑과 탈도핑 사이에서 매우 안정한 비가역 전기화학적 거동을 보였다.
1,2-디브로모에탄을 이용한 2-에티닐피리딘의 무촉매중합을 통하여 이온성 전도성 고분자를 높은 수율로 합 성하였다. 합성한 고분자의 분자구조를 여러 가지 분석장비로 측정한 결과 설계한 N-(2-브로모에틸)피리디늄 브로마 이드를 갖는 공액구조 고분자임을 확인할 수 있었다. 이 고분자의 UV-Visible스펙트럼에서는 800 nm 까지 흡수 피 크를 보여주는데, 이는 공액구조 고분자의 π→ π* 전이에 기인한 것이다. 아울러 고분자의 전기전도도 및 전기광학 특성을 측정하고 분석하였다. 이 고분자는 도핑과 탈도핑 사이에서 매우 안정한 비가역 전기화학적 거동을 보였다.
본 연구에서는 메탄 대향류 확산 화염내 탄소나노튜브의 합성에 대하여 실험 및 수치적 연구를 수행하였다. 아세틸렌을 일정비율로 메탄에 혼합하여 연료 가스로 사용하였으며, 탄소나노튜브의 합성을 위한 촉매로서 페로센이 이용되었다. 주요 인자로는 메탄 연료에 대한 아세틸렌의 혼합비율이며, 2 %, 6 %, 10 %로 혼합하였다. 탄소나노튜브를 채취한 그리드 위의 탄소나노튜브 합성 특성은 SEM 이미지로 분석되었다. 수치해석에서 화학반응 메카니즘으로는 GRI-Mech 3.0 이 적용되었다. 수치결과로는 아세틸렌 혼합 비율이 증가할수록 화염 온도도 증가하며 CO 몰분율도 증가하는 것을 알 수 있다. 실험결과로는 2% 아세틸렌 혼합 화염이 6 % 및 10 % 혼합 화염과 비교해 탄소나노튜브 합성이 잘 이루어졌음을 알 수 있었다. 이것은 6 % 및 10 % 아세틸렌 혼합화염의 경우 과도한 카본 소스의 생성이 발생해 오히려 화염 내 카본소스가 촉매입자로의 공급을 방해하기 때문이라 생각한다. 이 결과로부터 양호한 질의 탄소나노튜브 생성을 위해서는 적정한 양의 카본소스가 생성되어야 한다는 것을 알 수 있었다.
소듐 2-브로모에탄술포네이트를 이용한 2-에티닐피리딘의 무촉매중합을 통하여 새로운 이온성 폴리아세틸렌을 합성하였다. 중합반응은 균일하게 진행되었으며 높은 수율 (중합수율: 78%)로 해당고분자를 합성하였다. 반응 초기 사차 염화과정에서 생성된 활성화 N-(에틸술포네이트 소듐)-2-에티닐피리디늄 브로마이드가 중합반응의 단량체로 참여하고 있는 것으로 밝혀졌다. 고분자의 분자 구조를 여러 가지 분석기기로 확인한 결과 설계한 치환기를 갖는 폴리아세틸렌 유도체가 합성되었음을 확인할 수 있었다. 합성 고분자의 고유점도는 0.12-0.15 dL/g 범위였으며 X-선 회절분석 결과 무정형상임을 확인할 수 있었다. 고분자의 광발광 피크가 593 nm에서 관찰되었는데, 이는 2.09 eV의 광에너지에 해당한다. 이 고분자는 도핑과 탈도핑 피크 사이에서 비가역 전기화학적 거동을 보였다.
WCl6-EtAlCl2 촉매계를 이용하여 비교적 큰 분자량을 갖는 폴리(페닐아세틸렌)을 합성하였다. 중합반응이 잘 진행되었으며 중합수율은 81%였다. 합성한 폴리(페닐아세틸렌) 분자구조를 NMR(1H-,13C-), IR, UV-visible, 원소분석 등으로 분석한 결과 페닐 치환기를 갖는 공액구조 고분자가 합성되었음을 확인할 수 있었다. 아울러 332 nm의 빛으로 여기시킬 경우 PL 최대 peak는 424 nm에서 관찰되었는데, 이는 2.93 eV의 광 에너지에 해당한다. 이 고분자의 순환 전압전류 그림은 도핑과 탈도핑사이에서 비가역적인 전기화학적 거동을 보여주었다. 이 고분자의 전기화학적 과정이 매우 안정하였으며, 스캔속도에 따른 산화전류 밀도 실험으로부터 이 고분자의 산화-환언 과정은 확산-제어과정에 따르는 것으로 분석되었다.
Multi-walled carbon nanotubes (CNTs) were prepared by thermal chemical vapor deposition (CVD) and microwave plasma chemical vapor deposition (MPCVD) using various combination of binary catalysts with four transition metals such as Fe, Co, Cu, and Ni. In the preparation of CNTs from acetylene precursor by thermal CVD, the CNTs with very high yield of 43.6 % was produced over Fe-Co/Al2O3. The highest yield of CNTs was obtained with the catalyst reduced for 3 hr and the yield was decreased with increasing reduction time to 5 hr, due to the formation of FeAl2O4 metal-aluminate. On the other hand, the CNTs prepared by acethylene plasma CVD had more straight, smaller diameter, and larger aspect ratio(L/D) than those prepared by thermal CVD, although their yield had lower value of 27.7%. The degree of graphitization of CNTs measured by Id/Ig value and thermal degradation temperature were 1.04 and 602℃, respectively.