덕트에 설치되는 오리피스는 압력과 유량 제어용으로 많이 활용되고 있다. 선박의 거주 구역에 통풍 덕트는 환기와 배기를 위해 설치되며 및 선박의 설계 및 건조 후 검사는 공기 유속과 유량 그리고 소음 기준에 대해 수행된다. 이 연구에서는 선박의 선실 별 유량분배에 중요한 요소인 T-분지관을 대상 으로 오리피스를 적용한 경우 난류운동에너지 분포를 고찰하였다.
In this paper, we have studied about the Energy Storage System (ESS) for renewable energy such as wind and solar energy by using Battery Energy Storage System (BESS). The BESS, by using Li-Ion battery, takes the advantage of high energy density. The ESS is composed of a large number of the battery. It is necessary to stabilize the temperature of the battery in order to improve the performance of the ESS. To improve the performance of ESS, Using as a program to analysis the container internal flow and heat distribution. The use of the battery to the stable and suggest in the initial battery array design of the heat concentration phenomenon in the battery array
유비쿼터스 헬스케어 기술 및 휴대용 전자기기의 발전은 지속적으로 전원을 공급하기 위한 새로운 에너지원을 요구하고 있으며, 이러한 점에서 의류를 통한 인체 에너지 수확 시스템의 연구가 요청되고 있다. 인체에너지를 수확하는 방식의 하나인 열전은 인체와 주위 환경간의 온도차이로부터 에너지를 수확하는 방식으로, 본 연구에서 의복을 통한 열전에너지 수확의 기초자료를 확보하기 위하여 인체표면 온도의 분포를 실증적으로 고찰하였다. 이를 위해 체표 구간을 설정하고 구간별 온도분포를 분석하였다. 분석 결과, 상체의 체표온도가 하체에 비해 높았고 특히 심장과 가깝고 혈류량이 많은 몸통 부위의 체표온도가 높았다. 뒷목과 등, 허리의 후면 부위 체표온도가 앞면에 비해 높았으며, 팔 부위의 경우 위쪽 부위의 체표온도가 아래쪽 부위보다 높고 팔 후면이 정면과 측면에 비해 온도가 낮게 나타났다. 체표 구간별 평균 온도와 환경온 간의 차이값이 가장 높아 열전 수확 기능구조 설치에 가장 적합한 위치는 뒷목 부위로 나타났고, 등과 허리 부위, 측면 어깨부위, 가슴 부위, 정면 위팔 부위, 배 부위가 그 뒤를 이었다. 이러한 인체표면 온도분포 결과를 토대로, 본 연구에서는 열에너지 수확의류 개발을 위한 기본 지침을 도출하였다.
구조물이 가지는 에너지의 확률밀도함수를 이용한 능도제어 알고리듬을 제안한다. 구조물의 에너지는 Rayleigh 확률분포를 가지는 것으로 가정된다. 이것은 에너지가 항상 양의 값을 가지고 최소에너지가 발생할 확률은 1이라는 조건을 Rayleigh 확률분포가 만족시킨다는 사실에 근거한다. 제어력의 크기는 가정된 확률밀도함수에 따라 구조물의 에너지가 설계자에 의해 설정된 에너지 임계값을 넘을 확률의 크기에 비례하도록 산정되며, 제어력의 방향은 Lyapunov 제어기 설계기법에 따라 결정된다. 제시된 알고리듬은 LQR 제어기와 비교하여 최대응답을 줄이는 효과를 가지며, 제어력의 임계를 고려할 수 있는 장점을 가진다. 또한 Lyapunov 제어기에서 발생가능한 채터링(chattering)현상을 피할 수 있다.
양성자 치료기의 Passive Scattering System 노즐을 모의모사 하여 노즐 내 각 구성품에서 발생되는 중성자를 에너지별로 평가하였다. MCNPX code를 이용하여 치료환경에 사용되는 양성자 에너지 220 MeV, 도달 거리 20 cm, 6 cm 길이의 SOBP를 구현하고, 치료기 가동 시 발생하는 중성자를 각 구성품에 따라 종류별로 분류하였다. 양성자 가속기 구성품 중 산란체에서 중성자가 가장 높게 발생되었으며 양성자의 중심선 속에서부터 멀어질수록 중성자의 선속은 감소되었다. 본 연구는 양성자 가속기의 유지 보수 및 해체에 필수적인 방사화 평가를 진행하기 위한 기초자료로 활용할 수 있을 것으로 사료된다.
본 연구의 주목적은 조양하 유역의 유출응집구조와 에너지소비 양상을 멱함수 법칙분포의틀 내에서 해석하는 것이다. 이를 위하여 GIS를 기반 으로 대상유역 내 지점별 배수면적과 함께 소류력 및 수류력을 정의하는 지형학적 인자를 추출하고 해당 인자들의 여누가 분포에 대한 도해적 해석과 함께 멱함수 법칙분포의 적합을 수행하였다. 주요한 결과로서 세 가지 지형학적 인자들의 여누가 분포는 세 개의 개별적인 거동특성 구간으로 구분할 수 있었다. 멱함수 법칙분포 확률밀도함수의 매개변수를 최우도법을 이용하여 추정해 본 결과 배수면적과 수류력은 대표적인 규모를 유한 하게 결정할 수 없는 규모 불변성 지형인자이지만 소류력은 유한한 규모를 갖는 규모 종속성 지형학적 인자로 판단할 수 있었다. 또한 소류력의 경우 제한된 범위 내에서만 복잡계 거동을 보여 멱함수 법칙분포를 따르지 않는 것으로 판단되었다. 최우도법을 적용하여 추정한 배수면적의 멱함수 법칙분포 지수는 선행연구에 비하여 큰 수치로서 해당 지수의 추정에 사용된 방법론의 차이에 기인하는 것임을 확인할 수 있었다. 또한 수류력의 멱함수 법칙분포 지수는 선행연구에 비하여 다소 작은 수치로서 대상유역의 규모에 따른 수로경사의 특성에 기인하는 것으로 판단되었다.
우리나라는 반도체, 철강, 자동차, 선박 등의 제조업을 토대로 경제규모를 성장시켜왔으며, 성장에 비례하여 에너지 수입 의존도 또한 증가했다. 현재 우리나라는 에너지의 95% 이상을 수입하여 사용하고 있는 에너지 다소비 국가로써 2013년 기준 제조업 원자재의 전체 수입량은 하루 평균 약 1조원에 이르는 것으로 집계되었다. 하지만 국내에서 발생되는 폐기물의 약 50% 이상이 에너지 회수에 이용될 수 있음에도 불구하고 단순히 소각 및 매립으로 처리가 되고 있어 에너지 다소비 국가의 현실과는 대조적인 폐기물처리가 이루어지고 있음을 알 수 있다. 이에 환경부는 「자원순환기본법(2018.01.01. 시행)」을 마련하여 폐기물의 에너지화를 계획하고 있으며, 이와 관련해 소각으로부터 발생되는 열원, 온수, 증기 등의 에너지를 최대한 활용하여 그 효율에 따라 폐기물처분부담금을 감면해주는 방안을 구상하고 있다. 따라서 소각시설의 열에너지 회수효율 산정 및 산정을 위한 주요인자들의 과학적인 접근방법이 요구되었으며, 이에 본 연구에서는 열에너지 회수효율의 주요인자인 저위발열량 및 출열항목에 대하여 산정하고, 산정된 저위발열량 결과와 각 시설의 저위발열량 설계 값 및 발열량계측정값을 비교하여 타당성에 대하여 검토하고자 한다. 본 연구는 1차(2016.05.09.~2016.08.31.) 7개 시설(8호기), 2차(2016.09.05.~2016.10.30.) 4개 시설(9호기)로 진행하였으며, 대상 시설의 선정은 폐기물의 종류, 보일러의 설치형태, 소각로의 형태를 고려하여 선정하였다. 열에너지 회수효율의 산정을 위한 계측항목에 관련한 데이터를 일별로 수집하였으며, 계측 외 항목은 직접 측정하여 저위발열량 및 출열항목 등을 산정하였다. 대상 시설의 저위발열량 산정결과는 1차의 경우 2,776.6~3,881.4kcal/kg, 2차의 경우 1,921.5~5928.7kcal/kg으로 분포되는 것으로 나타났으며, 2차 대상시설 중 저위발열량 결과 값이 5928.7kcal/kg으로 산정된 시설의 경우 사업장폐기물 소각시설로 지정폐기물 투입비율이 100%인 것으로 나타났다. 연구결과, 지속적인 데이터 수집을 통해 출열항목을 산정하여 열에너지 회수효율을 극대화 시킬 방안을 마련해야 하며, 또한 과학적 근거를 수반한 저위발열량 산정방법을 마련해야 할 것으로 판단된다.
현재 국내의 주된 폐기물 처리 방식은 발생억제(Reduce), 재이용(Reuse), 재활용(Recycle)을 통한 물리적인 처리방식으로써 대량으로 발생하는 폐기물을 효율적으로 처리하기에는 한계가 있다. 이에 폐자원 에너지화(Recovery) 개념의 도입으로 폐기물의 단순한 처리가 아닌 효율적인 에너지 자원으로 활용함으로써 자원순환사회를 구축하기 위한 정책적 방안이 마련되었으며, 구체적인 방안의 하나로 2018년 1월 1일부터 시행되는 자원순환기본법을 통하여 소각시설에 발생되는 열에너지를 적극적으로 활용할 예정이다. 따라서 소각시설로부터 실질적으로 회수되어 사용되는 에너지의 정확한 수치화가 요구되었으며, 현재 국내에서 운영 중인 소각시설을 대상으로 시범사업을 진행하여 소각열에너지 회수・사용률의 실증에 노력을 기울이고 있다. 이에 본 연구에서는 폐자원에너지 회수・사용률 산정에서 가장 중요하게 작용되는 저위발열량을 도출하기 위한 핵심요소인 출열항목을 실측하여 소각열에너지 회수・사용률 산정을 위한 기초자료로 활용하고자 한다. 본 연구에서는 현재 운영 중인 생활폐기물 소각시설 2곳(A, B 소각시설)의 3개 호기와 사업장폐기물 소각시설 5곳(C, D, E, F, G 소각시설)의 5개 호기를 대상으로 5월부터 16주 동안 TMS 데이터 수집과 현장측정 및 시료분석을 병행하였으며, 종합적인 결과 값을 환경부 고시 제 2015-251호 폐자원에너지 회수・사용률 산정방법에 대입하여 소각로에서 발생되는 각각의 출열항목을 산출하였다. 또한 산출된 결과를 종합하여 생활폐기물 소각장과 사업장폐기물 소각장의 출열분포를 비교하여 보았다. 소각시설의 출열항목의 산정결과, 생활폐기물 소각시설 3개 호기의 출열 총합은 A시설 1호기가 13.54GJ/ton, 2호기가 14.12GJ/ton으로 산정되었으며, B시설 1호기는 12.72GJ/ton으로 산정되었다. 이 중 가장 높은 비율을 차지하는 출열항목은 증기 흡수열로 A시설 1호기는 9.57GJ/ton, 2호기는 9.82GJ/ton, B시설 1호기는 9.77GJ/ton을 차지하여 평균 72%의 분포를 보이는 것으로 나타났다. 또한 사업장폐기물 소각시설의 출열 총합은 C시설 16.65GJ/ton, D시설 15.48GJ/ton, E시설 13.35GJ/ton, F시설 12.49GJ/ton, G시설 11.79GJ/ton으로 산정되었으며, 사업장폐기물 소각시설 또한 생활폐기물 소각시설과 동일하게 증기 흡수열이 평균 65%의 분포를 보여 가장 높은 비율을 차지하는 것으로 나타났다. 연구결과, 지속적인 시범사업을 통해 실측값을 축적하여 소각열에너지 회수・사용률 제고를 위한 연구 등의 기초자료로 활용하여야 할 것으로 판단된다.
This paper examined energy consumption distribution by process and energy production-effect of MBT facilities inKorea. Generally, facilities that use fossil fuels for drying consumed energy about 70~80% in drying and exhaust gasestreatment process and energy distribution was heavily affected a position of drying and a kind of fuel. Energy production-effect by the ratio of input-energy to output-energy ranged from 4.54 to 9.60, however, if generation efficiency is reflected,it was standardized to low levels from 3.10~3.77. So we were able to confirm that the superiority of energy production-effect between facilities is not considerable.