검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        3.
        2008.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 논문에서는 적분형 르장드르 다항식을 사용한 3차원 계층적 고체요소의 유한요소 정식화를 보여준다. 제안하는 육면체 고체요소는 절점, 변, 면, 그리고 내부모우드를 포함한은 4개의 서로 다른 모우드로 구성되어 있다. 영에너지 모우드와 일정변형률 조건을 확인하기 위해 고유치 시험과 조각시험이 수행되었다. 여기에 추가되어, 적응적 p-유한요소해석을 위해 유한요소해석으로부터 구한 후처리 응력값의 평활화에 기초를 둔 사후오차평가 기법이 연구된다. 자유도가 증가함에 따라 수렴속도측면에서 균등 p-분배와 불균등 p-분배에 의한 유한요소해의 차이점이 비교된다. 제안된 요소의 성능을 보이기 위해 간단한 캔틸레버보가 테스트되었다.
        4,000원
        4.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 적응적 h-유한요소 세분화에 의한 박스형 절판 구조물의 선형좌굴 유한요소해석법을 제안한다. 면내회전 자유도를 갖는 변절점 평판쉘유한요소를 사용하여 유한요소의 거동을 개선하고 6자유도를 갖는 다른 유한요소와의 자유도의 연결을 용이하게 한다. 이와 같이 개발된 평판쉘유한요소에 의하여 박스형 절판구조물의 정확한 구조해석이 가능한데, 변절점유한요소를 정식화함으로써 적응적 h-유한요소 세분화시에 발생하는 다른 패턴의 사각형 유한요소 세분화망의 연결을 용이하게 해결한다. 오차평가에 대한 개선된 응력장을 얻기 위하여 상위수렴 조각회복법을 적용한다. 이와 같이 상위수렴 조각회복법에 의한 개선된 응력장에 의하여 구성된 유한요소 세분화망을 이용하여 좌굴하중과 좌굴모드를 자동적으로 구할 수 있도록 한다.
        4,000원
        5.
        2006.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구의 목적은 두 가지로 대별할 수 있다. 첫째는, 베리오그램 모델링에 기초를 둔 정규크리깅 보간법의 p-적응적 유한요소법으로의 적용성이다. 둘째는, 수정된 초수렴 팻취복구 기법을 사용한 사후오차평가기와 연계된 계층적 p-체눈 세분화의 적응적 유한요소 과정을 제시하는 것이다. 가중치를 부여한 보간기법중의 하나인 정규크리깅 방법은 가우스 적분점에서의 응력데이타로 부터 소위 준정해를 얻는데 적용된다. 가중치를 동일하게 가정하는 종래의 보간기법과는 달리 실험적 및 이론적 베리오그램을 작성한 후 보간을 위한 가중치를 결정하게 된다. 한편, 적응적 p-체눈 세분화는 해석영역의 각 체눈에서 p-차수를 만족할만한 정확도를 얻을 수 있도록 프로그램내에서 자동으로 사후오차평가를 통해 불균등 또는 선택적으로 증가시킨다. 수정된 초수렴 팻취복구기법을 검증하기 위해 극한치를 사용한 새로운 오차평가기가 제안된다. 제안된 알고리즘의 정당성은 선형탄성파괴역학의 대표적 문제들인 중앙균열판, 일변균열 및 양변균열 해석을 통해 테스트되었다.
        4,300원
        8.
        2004.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근, 유한요소해석견과의 신뢰도를 향상시키기 위하여 활발하게 연구되고 있는 적응유한요소해석은 반복계산을 통해서 해석결과의 오차가 사용자에 의해 지정된 허용오차와 같아지도록 하는 해석방법이다. 이와 간은 적응유한요소해석은 해석결과의 오차평가와 이에 따른 유한요소의 재구성과정으로 나누어진다. rp방법에서는 절점의 위치를 이동시켜 요소의 크기를 조절하는 r방법과 형상함수찻수를 증가시키는 p방법을 동시에 적용함으로써 적응해석의 유효성을 향상시키고자 하였다. 제안한 rp방법의 특성을 규명하고 적응해석의 유효성을 보이기 위하여 전형적인 이차원 평면문제들을 해석하고 그 결과를 검토하였다.
        4,000원
        9.
        2002.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 Bubble Mesh 기법을 이용한 적응적 최적 절점생성기법을 제안하고 이를 Element-free Galerkin 방법에 적용하였다. 무요소방법에서 제안된 일반적인 적응적 절점배치방법의 경우 적분격자를 이용하기 때문에 그 절점의 분포가 평가된 오차를 정확히 반영하지 못하고 불균등한 세분화로 인해 주변 절점분포와 급격한 절점밀도의 차이를 보이게 되어 추가적인 해석오차를 유발한다. 본 연구에서는 평가된 오차의 분포와 적분격자를 따라 구성된 불균등한 초기절점배치를 최적삼각격자 구성기법인 Bubble Mesh 기법을 이용하여 최적화 시키는 적응적 절점구성기법을 제안하였다. 절점의 불균등한 배치에 따른 추가적인 오차의 발생현상을 보이기 위해 1차원 문제를 해석하였고 본 연구에서 제안된 Bubble Mesh 기법을 이용한 적응적 무요소해석법의 적용성을 보이기 위해 2차원 문제를 해석하였다.
        4,000원
        10.
        2001.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 무요소법의 일종인 element-free Galerkin 방법(EFGM)을 이용한 새로운 적응적 해석법을 제안하였다. 이 방법의 핵심은 Delaunay 삼각화에 기초를 둔 적분 격자를 기초로 수치적분과 적응적인 절점의 추가 및 소거를 수행하는 것이다. 이러한 적응적 해석법은 적분격자의 분할이나 이를 위한 추가적인 정보에 대한 관리가 필요 없이 간편하게 적응적 해석을 수행할 수 있다. 또한 균열의 진전과 같은 다단계 적응적 해석에 있어서도 매 해석단계별로 평가된 오차에 기초를 둔 최적 해석모델이 Delaunay 삼각화에 의해 구성되도록 하였다. 이러한 특성은 요소의 구성으로부터 자유로운 무요소법의 장점을 최대한 활용하여 해석모델의 구축을 보다 원활하게 수행할 수 있다. 적응적 해석에 기초가 되는 해석 후 오차평가는 계산된 응력과 투영응력과의 차이를 오차로 추정하는 투영응력법을 이용하였다. 균열진전을 포함하는 2차원예제의 해석을 수행한 결과 제안된 해석법의 타당성과 적용성을 입증할 수 있었다.
        4,200원
        11.
        2000.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 element-free Galerkin(EFG) 방법에 기반한 적응적 정적균열진전해석기법을 제시하였다. 균열진전 매단계마다 적응적해석을 수행함으로써 전체 해석의 일관성과 정밀성을 동시에 확보할 수 있었다. 균열진전과정에 있어서의 적응적해석은 산정된 오차지표에 따라 적분을 위한 격자구조에 따라 절점을 추가하고 소거하는 과정을 통해 구현되었다. 이 때 사용된 오차지표는 원 EFG해석결과 얻어진 응력과 절점응력을 다시 투영한 응력의 차에 의해 얻어졌다. 제안된 해석기법의 타당성과 효용성을 수치예제에 의해 검증하였다. 그 결과 제안된 해석기법이 균열진전해석시 효율적으로 적용될 수 있음을 보였다.
        4,900원
        12.
        1999.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        4,000원
        13.
        1998.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 무요소방법에 적응적 해석기법을 적용하기 위한 부분 및 전체오차의 평가기법을 제안하였다. 본 연구에서 제안한 오차의 평가방법은 무요소방법에서 계산된 응력이 오차가 큰 영역에서 진동한다는 특성을 이용한 것으로 해석결과 얻어진 응력을 낮은 차수의 형상함수로 투사하는 후처리를 함으로써 가상진동모우드를 제거하고 이때 얻어진 투영응력과 원래의 응력을 비교하여 부분오차 및 전체오차를 구할 수 있다. 1차원 및 2차원 예제해석을 통하여 투영응력을 구할 때 가능한 한 작은 영향영역을 사용하는 것이 바람직하다는 것을 보였으며 이는 영향영역의 크기를 과도하게 설정할 경우 투영응력을 과대 평가할 수 있기 때문이다. 본 연구에서 제안한 오차의 평가기법은 다른 무요소 방법에 적용될 수 있다.
        4,600원
        14.
        1993.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 유한요소해석에서 보다 정확한 해를 위한 적응해석법에 대해 많은 연구가 이루어지고 있다. 본 논문은 요소 면적당의 오차를 균일화하여 절점을 최적의 위치로 변화시키는 r법과 오차가 큰 요소를 같은 모양의 요소로 세분시키는 h법을 혼합한 rh형 적응해석법을 사용하였다. 그 결과 같은 자유도에서 h법과 rh법의 오차감소율과 수렴속도는 거의 같에 나타났지만, rh법은 h법만 사용했을 때보다 전체 자유도 증가를 최대한 억제한 상태에서 정확한 유한요소해를 얻을 수 있었다.
        4,500원
        15.
        1988.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        유한요소 적웅분할 해석을 행할경우 강도매트릭스의 요소배열 형태는 밴드 현상이 아닌 성긴 현상을 갖게된다. 그러한 성긴 현상의 평형방정식틀을 풀기 위해서는 컴퓨터 주기억 장소의 가용량이 중요한 판건이 된다. 따라서, 주기억 장소의 사용량을 최소로 뜰이고 수렴속도가 높은 반복볍에 의한 해를 구 하는 알고리즘이 요구된다. 본 논문에서는 ‘불완전 Cholesky 분해’를 이용한 선조정 공액구배볍올 다른 종류의 션조정 구배법틀과 비교, 연구해 본다.
        4,000원
        16.
        2018.10 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 적응적 분할격자기반 2차원 침수해석모형 K-Flood를 개발하였다. 분할격자기법은 흐름 특성을 기반으로 격자를 분할하여 흐름영역과 비흐름영역으로 구분하는 격자생성기법이며, 분할격자기법과 격자세분화기법을 동시에 활용하면 매우 적은 수의 격자로 복잡한 형상의 흐름 영역을 표현할 수 있어 효율적인 모의가 가능하다. 특히 최근 도시홍수에 대해 매우 정밀한 해상도의 자료와 격자를 이용하여 보다 정확한 침수해석 또는 예보를 하고자 하는 시도가 늘어나고 있으며, K-Flood는 이러한 복잡한 흐름영역의 계산 시 적응적 분할격자를 활용하여 효율적인 격자생성이 가능하다. 공간 및 시간에 대해 2차 정확도의 유한체적 수치해법이 적용되었다. K-Flood의 검증을 위해 2차원 침수해석모형의 검증에 널리 사용되고 있는 1) 원형 실린더에 의한 충격파 반사 모의, 2) 도시홍수실험 모의, 3) Malpasset 댐붕괴 모의를 수행하였다. 모든 모의에서 관측자료 및 과거의 모의결과와 비교하여 성공적으로 K-Flood의 성능을 검증하였다.