In zinc-air batteries, the gel polymer electrolyte (GPE) is an important factor for improving performance. The rigid physical properties of polyvinyl alcohol reduce ionic conductivity, which degrades the performance of the batteries. Zinc acetate is an effective additive that can increase ionic conductivity by weakening the bonding structure of polyvinyl alcohol. In this study, polymer electrolytes were prepared by mixing polyvinyl alcohol and zinc acetate dihydride. The material properties of the prepared polymer electrolytes were analyzed by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Also, Electrochemical impedance spectroscopy was used to calculate ionic conductivity. The electrolyte resistances of GPE, 0.2 GPE, 0.4 GPE, and 0.6 GPE were 0.394, 0.338, 0.290, and 0.213 Ω, respectively. In addition, 0.6 GPE delivered 0.023 S/cm high ionic conductivity. Among all of the polymer electrolytes tested, 0.6 GPE showed enhanced cycle life performance and the highest specific discharge capacity of 11.73 mAh/cm2 at 10 mA. These results verified that 0.6 GPE improves the performance of zinc-air batteries.
리튬 금속 기반 전극의 높은 용량에도 불구하고, 제어가 어려운 덴드라이트 성장은 낮은 쿨롱 효율, 안전 문제를 야기해, 리튬금속 배터리의 상용화를 제한한다. 본 연구에서는 압전 복합체인 BaTiO3/PVDF (BTO@PVDF) 기반 보호층을 리튬금속에 코팅, 덴드라이트에 의한 부피팽창으로 발생한 변형을 분극을 이용하여, 리튬 금속 전극의 안정성 및 성능을 향상 하고자 한다. 이를 통해, 균일한 리튬이온의 증착이 가능해졌으며, BTO@PVDF 전극은 100 사이클 동안 약 98.1% 이상의 쿨 롱 효율을 나타내었다. 또한, CV를 통해 향상된 리튬이온의 확산계수(DLi+) 증가를 보였으며, 본 연구에서 제시된 전략은 리 튬 금속 전극의 성능 향상에 새로운 길을 나타내준다.
Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.
Flexible zinc-air batteries have many merits, including low cost, high safety, environmentally friendliness applicability, etc. One of the key factors to improve the performance of flexible zinc-air batteries is to use a gel electrolyte. In this study, gel electrolytes were synthesized from potato, sweet potato, and corn starch. In a comparison of each starch, the corn starch-based gel electrolyte showed the highest discharge capacity of 12.41 mAh/cm2 in 20 mA and 6.47 mAh/cm2 in 30 mA. It also delivered a higher specific discharge capacity of 7.06 mAh/cm2 than the other materials after 100° bending. In addition, the electrochemical impedance spectroscopy (EIS) was analyzed to calculate the ionic conductivity. The potato, sweet potato, and corn starch-based gel electrolytes showed electrolyte resistances (Re) of 0.306, 0.298, and 0.207 Ω, respectively. In addition, the corn starch-based gel electrolyte delivered the highest ionic conductivity of 0.121 S cm-1 among the other gel electrolytes. Thus, the corn starch-based gel electrolyte was verified to improve the performance of flexible zinc-air batteries
There is ongoing research to develop lithium ion batteries as sustainable energy sources. Because of safety problems, solid state batteries, where electrolytes are replaced with solids, are attracting attention. Sulfide electrolytes, with a high ion conductivity of 103 S/cm or more, have the highest potential performance, but the price of the main materials is high. This study investigated lithium hydride materials, which offer economic advantages and low density. To analyze the change in ion conductivity in polymer electrolyte composites, PVDF, a representative polymer substance was used at a certain mass ratio. XRD, SEM, and BET were performed for metallurgical analyses of the materials, and ion conductivity was calculated through the EIS method. In addition, thermal conductivity was measured to analyze thermal stability, which is a major parameter of lithium ion batteries. As a result, the ion conductivity of LiH was found to be 106 S/cm, and the ion conductivity further decreased as the PVDF ratio increased when the composite was formed.
최근 전기자동차용 이차전지 등의 수요가 급증하면서 효율적인 리튬 화합물의 생산이 큰 주목을 받고 있다. 바이 폴라막 전기투석은 친환경적이며 경제성 및 효율성이 우수한 전기화학적 리튬 화합물 생산공정으로 알려져 있다. 바이폴라막 전기투석 공정의 효율은 바이폴라막의 성능에 의해 좌우되기 때문에 바이폴라막의 선택이 매우 중요하다. 본 연구에서는 세 계적으로 가장 널리 사용되고 있는 대표적인 상용 BPM인 Astom사의 BP-1E 및 Fumatech사의 FBM을 비교 분석함으로써 전기화학적 LiOH 생산을 위한 BPED 공정에 적합한 BPM의 특성을 도출하고자 하였다. 체계적인 평가를 통해 BPM의 특성 중 막의 이온전달저항 및 co-ion leakage를 줄이는 것이 가장 중요하고 이러한 관점에서 BP-1E가 FBM보다 더 우수한 성능 을 가지고 있음을 확인하였다.
광전기화학 성능을 향상시키기 위해 각 ZnO, ZnSe과 g-C3N4 소재의 장점을 살리도록 3성분계 적층 구조를 디자 인했다. 용액공정으로 FTO 기판위에서 ZnO 나노로드 어레이가 성장하도록 한 후 ZnO표면에 Se을 부착시켜 ZnO표면에 서 ZnSe층이 형성 되도록 이온 치환법을 도입하였다. ZnO/ZnSe 나노로드 위에 g-C3N4 층을 스핀코팅 한 후 각 층이 화 학적 접합이 되도록 질소 분위기 하에서 열처리를 하였다. AM 1.5G, 0.5 V 외부전압하에서 각 적층구조별로 광전기화학 적 전류밀도를 측정하였고 비교 결과 ZnO/ZnSe/g-C3N4 나노로드가 ZnO 및 ZnO/ZnSe 나노로드에 비하여 보다 높은 광 전류 밀도가 측정되었다. 수직 정렬된 ZnO 육각 프리즘형태는 큰 비표면적과 축 방향을 따라 전자 흐름을 원활히 하고, ZnSe 층은 비표면적과 광흡수 범위를 더욱 넗히는 효과를 가져왔다. 이로 인하여 ZnO/ZnSe/g-C3N4 삼원 접합 전극의 향상된 성능은 가시광선 흡수범위 확장, 전하 분리 강화 및 전자 전도도 향상으로 인한 시너지 효과에 기인되는 것으로 판단된다.
In this study, N/S co-doped carbon felt (N/S-CF) was prepared and characterized as an electrode material for electric double-layer capacitors (EDLCs). A commercial carbon felt (CF) was immersed in an aqueous solution of thiourea and then thermally treated at 800 oC under an inert atmosphere. The prepared N/S-CF showed a large specific surface area with hierarchical pore structures. The electrochemical performance of the N/S-CF-based electrode was evaluated using both 3- electrode and 2-electrode systems. In the 3-electrode system, the N/S-CF-based electrode showed a good specific capacitance of 177 F/g at 1 A/g and a good rate capability of 41% at 20 A/g. In the 2-electrode system (symmetric capacitor), the freestanding N/S-CF-based electrode showed a specific capacitance of 275 mF/cm2 at 2 mA/cm2, a rate capability of 62.5 % at 100 mA/cm2, a specific power density of ~ 25,000 mW/cm2 at an energy density of 23.9 mWh/cm2, and a cycling stability of ~ 100 % at 100 mA/cm2 after 20,000 cycles. These results indicate the N/S co-doped carbon felts can be a promising candidate as a new electrode material in a symmetric capacitor.
높은 안전성과 견고한 기계적 특성을 가진 고체상 슈퍼커패시터는 차세대 에너지 저장 장치로서 세계적 관심을 끌고 있다. 슈퍼커패시터의 전극으로서 경제적인 탄소 기반 전극이 많이 사용되는데 수계 전해질을 도입하는 경우 소수성 표 면을 가진 탄소 기반 전극과의 계면 상호성이 좋지 않아 저항이 증가한다. 이와 관련하여 본 연구에서는 전극 표면에 산소 플라즈마 처리를 하여 친수화된 전극과 수계 전해질 사이의 향상된 계면 성질을 기반으로 더 높은 전기화학적 성능을 얻는 방법을 제시한다. 풍부해진 산소 작용기들로 인한 표면 친수화 효과는 접촉각 측정을 통해 확인하였으며, 전력과 지속시간을 조절함으로써 친수화 정도를 손쉽게 조절할 수 있음을 확인하였다. 수계 전해질로 PVA/H3PO4 고체상 고분자 전해질막을 사 용하였으며 프레싱하여 전극에 도입하였다. 15 W의 낮은 전력으로 5초간 산소 플라즈마 처리를 시행하는 것이 최적 조건이 었으며 슈퍼커패시터의 에너지 밀도가 약 8% 증가하였다.
Tin/graphite composites are prepared as anode materials for Li-ion batteries using a dry ball-milling process. The main experimental variables in this work are the ball milling time (0–8 h) and composition ratio (tin:graphite=5:95, 15:85, and 30:70 w/w) of graphite and tin powder. For comparison, a tin/graphite composite is prepared using wet ball milling. The morphology and structure of the different tin/graphite composites are investigated using X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and scanning and transmission electron microscopy. The electrochemical properties of the samples are also examined. The optimal dry ball milling time for the uniform mixing of graphite and tin is 6 h in a graphite-30wt.%Sn sample. The electrode prepared from the composite that is dry-ballmilled for 6 h exhibits the best cycle performance (discharge capacity after 50th cycle: 308 mAh/g and capacity retention: 46%). The discharge capacity after the 50th cycle is approximately 112 mAh/g, higher than that when the electrode is composed of only graphite (196 mAh/g after 50th cycle). This result indicates that it is possible to manufacture a tin/graphite composite anode material that can effectively buffer the volume change that occurs during cycling, even using a simple dry ball-milling process.
고용량 배터리에 대한 요구가 증가에 따라 기존 음극재보다 높은 용량(3,860 mAh/g)과 낮은 전기화학적 전위(– 3.040 V)를 갖는 리튬 금속 기반 음극재에 대한 연구가 활발하게 이루어지고 있다. 본 연구에서는 수열 합성을 통해 제작된 아나타제(anatase) 타입의 TiO2 나노 입자 기반한 PVdF-HFP/TiO2 복합체를 리튬 금속 음극의 계면 보호층으로 적용하였다. 결정구조 및 형상 분석을 통해 유/무기-리튬 나노복합체 박막의 형성을 확인하였다. 또한, 전지화학 테스트(사이클 테스트 및 전압 프로파일)를 통해 리튬 금속 음극의 전기화학 성능은 복합체 보호막이 TiO2 10 wt%, 코팅 두께 1.1 μm의 조건에서 가장 개선된 전기화학적 성능(콜롱 효율 유지: 77 사이클 동안 90% 이상) 발현을 확인하였다. 이를 통해, 처리하지 않은 리튬 전극 대비 본 보호층에 의한 리튬 금속 음극의 성능 안정화/개선 효과가 검증되었다.
The electrochemical reaction between lead borate glass frit doped with Sn metal filler and Ni-Cr wire of a J-type resistor during a term of Joule heating is investigated. The fusing behavior in which the Ni-Cr wire is melted is not observed for the control group but measured for the Sn-doped specimen under 30 V and 500 mA. The Sn-doped lead borate glass frit shows a fusing property compared with other metal-doped specimens. Meanwhile, the redox reaction significantly contributes to the fusing behavior due to the release of free electrons of the metal toward the glass. The electrons derived from the glass, which used Joule heat to reach the melting point of Ni-Cr wire, increase with increasing corrosion rate at interface of metal/ glass. Finally, the confidence interval is 95 ± 1.959 %, and the adjusted regression coefficient, R in the optimal linear graph, is 0.93, reflecting 93% of the data and providing great potential for fusible resistor applications.
Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g−1 at a current density of 0.1 A g−1, a superior high-rate performance (104 F g−1 at a current density of 20.0 A g−1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g−1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.
Electronic textiles promise to provide an intelligent platform to enlarge the scope of wearable electronic applications. Therefore, the combination of flexible energy storage devies into wearable systems is a key for operating these electronic textiles during bending, knotting, and rolling. Nonetheless, the application of fibrous supercapacitors consisting of a gel-electrolyte and carbon fiber electrode is still obstructed by low capacitance, low rate-performance, and poor cycling stability owing to the inefficient interface between the gel-electrolyte and electrode. Here, a fibrous supercapacitor is obtained using an optimized gelelectrolyte that improves the ionic diffusion capability. The optimized fibrous supercapacitor shows a superior electrochemical performance, including high specific capacitance of 41 mF cm−2 at current density of 2.0 μA cm−2, high-rate performance with 17 mF cm−2 at a current density of 15.0 μA cm−2, and outstanding cycling stability (88% after 3,000 cycles at a current density of 200.0 μA cm−2). The excellent energy storage performance is mainly attributed to the optimzied interface between the gelelectrolyte and electrode material, leading to an improved ionic diffusion capability.
본 연구는 절탄기 튜브의 저온부식 손상을 방지하기 위해 Inconel 625 용사재료를 활용하여 아크 열용사 코팅기술 적용 후 실링 처리를 실시하였다. 용사코팅(TSC) 층의 내식성 분석을 위해 0.5 wt% 황산 수용액에서 다양한 전기화학적 실험을 진행하였다. 양극분극 실험 후에는 주사전자현미경과 EDS 성분분석을 통해 부식 손상 정도를 파악하였다. 자연전위 계측 시 TSC+실링처리(TSC+Sealing)의 안정적인 전위 형성을 통해 실링처리 효과를 확인하였다. 양극분극 실험 결과 TSC와 TSC+Sealing에서 부동태 영역이 확인되었으며, 부식 손상 역시 관찰되지 않아 내식성이 개선되었다. 더불어 타펠분석에 의해 산출된 부식전위와 부식전류밀도 분석 결과 TSC+Sealing의 내식성이 가장 우수하게 나타났다.