공유 유기 골격체(covalent organic frameworks, COF)는 기능성을 정밀하게 설계하고 제어할 수 있는 결정성 다 공성 소재로서, 차세대 연료전지 멤브레인으로 주목받고 있다. 표준 양성자 교환막인 나피온(Nafion)은 높은 비용과 좁은 가 용 범위 등의 한계에 직면해 있다. 본 논문은 COF를 다양한 고분자 매트릭스에 도입하여 이러한 단점을 극복하기 위한 최신 연구 전략을 심도 있게 다룬다. 특히 양성자 교환막 연료전지(proton exchange membrane fuel cells, PEMFC), 음이온 교환막 연료전지(anion exchange membrane fuel cells, AEMFC), 그리고 고온(high-temperature) PEMFC (HT-PEMFC)용 COF 기반 복합막의 설계와 성능 특성에 집중한다. 다양한 COF 기능화 및 복합화 전략을 통해 이온 전도도, 기계적 강도 및 운전 안정 성을 향상시킨 주요 연구들을 비평적으로 논하며, 연료전지의 전반적인 효율 향상에 대한 COF의 잠재력을 조명한다.
본 연구는 중국의 선도적인 이차 전지 기업인 CATL을 사례로 하여, 기술 혁신 능력의 발전 과정을 기술 격차, 기술 효율, 기술 축적의 세 가지 핵심 차원을 중심으로 분석하는 데 목적이 있다. 특히 2011년부터 2024년까지의 연차 보고서, 언론 보도, 산업 자료 등을 바탕으로, CATL 의 기술 진화 경로를 모방 - 창조적 모방 - 자주 혁신이라는 세 단계로 구분하고, 각 단계에서 외부 환경과 기술 역량 간의 상호작용을 동적 능 력 이론 틀 내에서 고찰하였다. 또한 본 연구는 구매자, 공급자, 경쟁자, 정부, 기술이라는 외부 환경 요소와 기술 혁신의 내생적 요인 간 통합 모델을 구성하고, 그 분석을 통해 CATL이 기술 격차 축소, 효율 향상, 기술 축적을 어떻게 실현하였는지를 규명하였다. 본 연구는 CATL의 사 례를 통해 급변하는 글로벌 배터리 산업에서 기술 후발 기업이 어떻게 전략적으로 대응하고 성장할 수 있는지를 보여주며, 향후 한국을 포함한 타 국가의 유사 산업 및 기업에 실질적인 시사점을 제공한다.
초임계 이산화탄소 조건에서 다중벽 탄소 나노튜브(MWCNT)에 공유결합으로 조합된 폴리(2-에티닐피리디 늄 염) 복합체를 제조하였다. 초기 반응 단계에서 MWCNT 표면에서 형성된 4차염화 2-에티닐피리디늄 염의 활성 화된 아세틸렌 삼중 결합이 MWCNT 표면에서 연속적으로 중합되어 폴리(2-에티닐피리디늄 염)이 공유결합으로 조 합된 MWCNT가 용이하게 제조되었다. MWCNT/폴리(2-에티닐피리디늄 염)의 전기 광학 및 전기화학적 특성을 측 정하고 분석하였다. 해당 복합체의 광발광 피크는 2.04 eV의 광자 에너지에 해당하는 610 nm에서 관찰되었다. SnO2:F/TiO2/N719 염료/고체 전해질/Pt 장치가 있는 준고체 DSSC를 MWCNT/P2EP로 제조하였는데, 이의 최대 에 너지 변환효율은 5.33%였다.
연료전지 핵심 소재인 고분자 전해질막은 높은 내화학성과 수소이온전도성을 갖는 과불소계 술폰산 이오노머가 주로 사용된다. 하지만 이러한 이오노머조차도 연료전지 구동 중 발생하는 라디칼 공격으로 인해 화학적 분해가 발생하여 장 기 내구성 확보에 어려움을 겪고 있다. 이를 완화하기 위해 라디칼 스캐빈저로 도입이 간편한 이온형 산화방지제를 적용하고 있으나, 연료전지 구동 중 전극 간 전위차에 의해 세륨 이온이 이동(cerium ion migration)하는 현상으로 스캐빈저 효과가 감 소하는 문제가 있다. 본 연구에서는 강화막 내에서 세륨 이온의 이동성을 조절하기 위한 방안으로 폴리에틸렌글리콜(PEG) 도입을 제시하였으며, 이를 통해 PEG 도입이 강화막의 내구성에 미치는 영향을 조사하였다.
본 연구에서는 유기계 산화 방지제인 가려진 페놀이 그래프팅된 산화 그래핀(hindered phenol-grafted graphene oxide, HP-GO)을 합성하였고, 이를 도입한 나피온(Nafion) 기반의 복합 막을 제조하여 고분자 전해질 막 연료전지에 응용하 였다. HP-GO는 3,5-디-tert-뷰틸-4-히드록시페닐프로피오닐 클로라이드에 존재하는 염화 카보닐기(carbonyl chloride)와 GO에 존재하는 히드록시간의 치환 반응을 통해 합성되었으며, 합성된 HP-GO를 고분자 기지체 대비 0.01~0.5 wt%까지 포함하는 복합 막을 제조하여 순수 Nafion과의 물성 차이를 비교하였다. 특정 함량의 HP-GO가 첨가된 복합 막은 순수 Nafion에 비해 우수한 인장강도와 수분 흡수율 및 치수안정성을 나타내었다. 특히 HP-GO의 산화 방지 특성으로 인해 HP-GO가 첨가된 복 합 막은 장시간의 펜톤 평가(Fenton’s test) 이후 순수 Nafion 대비 높은 산화 안정성을 나타내었다. 또한 HP-GO에 의한 향상 된 수분 흡수율에 의해 복합 막은 전 습도 구간에서 순수 Nafion 대비 우수한 수소 이온 전도도를 나타내었다.
본 연구에서는 산화 방지 특성이 있는 가려진 페놀기를 도입한 산화 그래핀(hindered phenol-grafted graphene oxide, HP-GO)을 합성한 후 탄화수소계 고분자인 sulfonated poly(arylene ether sulfone) (SPAES)을 기지체로 사용한 복합 막을 제조하여 고분자 연료전지 시스템에 응용하고자 하였다. HP-GO는 GO 표면의 하이드록시기(hydroxy group)와 HP의 염화 카 보닐(carbonyl chloride) 간의 친핵성 아실치환 반응을 통해 합성되었으며, HP-GO의 비율을 다르게 첨가한 복합 막을 제조한 후 선형 SPAES 막과의 비교를 통해 성능 특성 변화를 확인하였다. 특정 함량의 HP-GO를 첨가한 복합 막의 경우 선형 SPAES 막에 비해 체적 안정성과 기계적 강도 및 수소 이온 전도도가 증가된 것을 확인할 수 있었으며, 펜톤 평가(Fenton’s test) 진행 후 막 분해 시간 및 잔여 막 무게 비율이 증가되는 경향을 통해 화학적 내구성 역시 증가한 것을 확인할 수 있었다.
세계적인 탄소중립 정책 추진과 수소 에너지 수요 증가에 따라 고분자 전해질 수전해 및 연료전지 기술 개발이 활발히 이루어지고 있다. 해당 기술의 핵심 소재인 과불소계 술폰산 이오노머는 우수한 전기화학적 특성과 화학적 안정성을 가지고 있지만, 높은 제조비용, 한정된 공급망, 강화되는 환경 규제와 같은 문제로 인해 효과적인 재활용 및 재제조 기술이 요구되고 있다. 본 연구에서는 초임계 분산 기술을 통해 전해질막 및 막-전극접합체의 제조과정에서 발생하는 고활성을 갖는 전해질막 스크랩을 연료전지 전극바인더로 재제조하는 방법을 제시하고자 한다.
고온 구동형 고분자 전해질 막 연료전지(high temperature polymer electrolyte membrane fuel cell, HT-PEMFC)는 구동 중 발생되는 불순물에 대한 내성이 높고 물관리가 용이하며 고순도의 가스를 연료로 사용하지 않아도 되는 장점을 갖는 다. HT-PEMFC는 인산이 도핑된 막을 통해 수소이온이 전도되기 때문에 전해질 막의 높은 인산의 유지율이 요구된다. 본 총 설에서는 인산의 침출을 방지하여 고성능의 HT-PEMFC용 고분자 전해질 막을 개발하기 위해 1) 인산이 도핑된 전해질 막의 인산 침출에 영향을 미치는 요소를 파악한 후, 이를 개선하기 위해 2) 폴리벤즈이미다졸 기반 막과 인산과의 상호작용을 강 화하여 인산 침출을 방지할 수 있도록 고분자 구조 설계를 진행한 연구와 3) 이오노머의 이온교환 작용기와 인산과의 이온 쌍 상호작용을 통해 인산의 침출을 방지할 수 있도록 이오노머 구조 설계를 진행한 연구들에 대해 살펴보고자 한다.
This study explores the introduction and applicability of the Species Protection Index (SPI) as a tool to evaluate the effectiveness of biodiversity conservation. Specifically, the SPI was recalculated for amphibians in Korea and compared with the internationally provided SPI results. The pilot evaluation of SPI for amphibians showed an increase from 41.52, based on international data, to 44.25, indicating that SPI calculations using domestic data can reflect conservation status more accurately than international SPI results. The findings suggest that SPI can serve as an important scientific basis for formulating national biodiversity conservation policies and managing protected areas, contributing to the development of more effective conservation strategies.
In this study, flow analysis was performed using ANSYS CFX to evaluate the performance of the 30kg hydrogen fuel cell hexa-copter drone in hovering flight. In the case of a hydrogen fuel cell hexa-copter drone, a total of four cooling fans are mounted on the drone's body in two pairs on the left and right to cool the fuel cell module. In order to evaluate the effect of the air flow from the cooling fan on the aerodynamic properties of the hydrogen fuel cell drone as the mounted cooling fan operates, the change in thrust for the case where the cooling fan operates and does not operate was compared and analyzed. Looking at the analysis results, it was found that the presence or absence of the drone's cooling fan had little effect on the drone's thrust through the thrust results for the six wings.
Solar energy has been recognized as an alternative energy source that can help address fuel depletion and climate change issues. As a renewable energy alternative to fossil fuels, it is an eco-friendly and unlimited energy source. Among solar cells, thin film Cu2ZnSn(S,Se)4 (CZTSSe) is currently being actively studied as an alternative to heavily commercialized Cu (In,Ga)Se2 (CIGS) thin film solar cells, which rely upon costly and scarce indium and gallium. Currently, the highest efficiency achieved by CZTSSe cells is 14.9 %, lower than the CIGS record of 23.35 %. When applied to devices, CZTSSe thin films perform poorly compared to other materials due to problems including lattice defects, conduction band offset, secondary phase information, and narrow stable phase regions, so improving their performance is essential. Research into ways of improving performance by doping with Germanium and Cadmium is underway. Specifically, Ge can be doped into CZTSSe, replacing Sn to reduce pinholes and bulk recombination. Additionally, partially replacing Zn with Cd can facilitate grain growth and suppress secondary phase formation. In this study, we analyzed the device’s performance after doping Ge into CZTSSe thin film using evaporation, and doping Cd using chemical bath deposition. The Ge doped thin film showed a larger bandgap than the undoped reference thin film, achieving the highest Voc of 494 mV in the device. The Cd doped thin film showed a smaller bandgap than the undoped reference thin film, with the highest Jsc of 36.9 mA/cm2. As a result, the thin film solar cells achieved a power conversion efficiency of 10.84 %, representing a 20 % improvement in power conversion efficiency compared to the undoped reference device.