A thin Cu seed layer for electroplating has been employed for decades in the miniaturization and integration of printed circuit board (PCB), however many problems are still caused by the thin Cu seed layer, e.g., open circuit faults in PCB, dimple defects, low conductivity, and etc. Here, we studied the effect of heat treatment of the thin Cu seed layer on the deposition rate of electroplated Cu. We investigated the heat-treatment effect on the crystallite size, morphology, electrical properties, and electrodeposition thickness by X-ray diffraction (XRD), atomic force microscope (AFM), four point probe (FPP), and scanning electron microscope (SEM) measurements, respectively. The results showed that post heat treatment of the thin Cu seed layer could improve surface roughness as well as electrical conductivity. Moreover, the deposition rate of electroplated Cu was improved about 148% by heat treatment of the Cu seed layer, indicating that the enhanced electrical conductivity and surface roughness accelerated the formation of Cu nuclei during electroplating. We also confirmed that the electrodeposition rate in the via filling process was also accelerated by heat-treating the Cu seed layer.
황산구리 전해욕에 분산제인 콜리이달 실리카(SiO2현탁액)를 첨가시키는 분산도금의 방법을 이용하여 음극에 석출하는 전해 석출물의 결정구조, 표면형상, 결정방향 등의 변화를 검토하였고 내식성, 물리적 특성 또한 조사하였다. 콜로이달 실리카를 분산시킨 구리 전해욕의 석출피막의 특성에 대해서 조사한 결과, 다음과 같은 결론을 얻었다. 전해 석출피막의 결정입자가 미세화 되고, 균일하게 성장됨은 물론, 결정 수가 증가하였으며, 콜로이달 실리카의 분산 효과에 의해서 전해 석출피막의 경도가 대략 16%까지 상승하였다. 또한 콜로이달 실리카를 분산시킨 극리 전착층의 X-선 회절패턴이 (111)면, (200)면과 (311)면이 거의 소멸되어 우선 방위가 (111)에서 (110)면으로 변화되었다. 부식전위의 측면에서도 콜로이달 실리카의 흡착 효과에 의해서 구리 전착층의 전위가 귀하게 이동하는 효과를 얻을 수 있었다.
미생물전해전지(Microbial Electrolysis Cells, MECs)는 산화전극과 환원전극 사이에 적당한 전위차가 유지되도록 외부전원을 이용하여 전압을 인가함으로서 산화전극 표면에 부착 성장하는 전기적으로 활성을 가진 미생물에 의한 유기물 분해를 촉진시키고 수소나 메탄과 같은 유용물질을 생성시키는 장치이다. 따라서, 최근 미생물전해전지를 이용하여 유기성 폐수의 처리 및 에너지회수를 위한 연구들이 활발하게 진행되고 있다. 미생물전해전지의 운전과 성능에서 미치는 가장 중요한 인자 중의 한 가지는 전극이다. 지금까지 미생물전해전지 연구에 사용되어온 전극들은 대부분 전기전도성이 낮거나 부식이 문제가 된 경우가 많아 실용화에 걸림돌이 되고 있다. 여러 가지 전극재료들 중 흑연섬유직물(GFF; Graphite Fiber Fabric)은 내구성이 강하고 비표면적이 넓지만 전기전도성이 낮다는 단점이 있으며, 탄소나노튜브(Carbon Nanotube, CNT)는 전도성이 대단히 우수한 물질이지만 전극으로 성형, 가공하기 위한 제작기술이 없는 상황이다. 본 연구에서는 흑연섬유직물의 표면에 탄소나노튜브를 전기영동전착법(Electrophoretic deposition, EPD)으로 고정함으로서 내구성이 높고 비표면적과 전도성이 우수한 전극을 제작하기 위한 연구를 수행하였다. 탄소나노튜브를 흑연섬유직물의 표면에 전착시키기 위하여 먼저, 탄소나노튜브(1g)와 PEI(Polyethylenimine) 및 nickel pyrite(PEI1000-Ni500ppm, PEI500-Ni250ppm, PEI500- Ni500ppm)를 초순수 1L에 혼합한 다음 초음파를 이용하여 분산시켜 전기영동 용액을 준비하였다. 면적이 동일한 흑연섬유직물(Working Electrode: GFF)과 스텐리스망(Counter Electrode: stainless steel mesh)을 전기영동 용액에 평행하게 고정하고 두 전극 사이에 전압을 인가하여 전착시켰으며, 200℃에서 열처리를 하여 미생물전해전지용 전극을 제작하였으며, 전자현미경(Scanning Electron Microscope, SEM)을 이용하여 흑연섬유직물의 표면에 전착된 탄소나노튜브의 상태를 확인하였다. 준비된 전극들은 1cm² 크기로 잘라 four-point법으로 저항 측정하였다. 흑연직물섬유은 저항이 0.115Ω/cm이었으나, 탄소나노튜브가 표면에 전착된 흑연섬유직물 전극의 저항은 크게 감소하였다. 특히, 탄소나노튜브 및 PEI500-Ni250ppm으로 구성된 전기영동용액으로 탄소나노튜브를 표면에 전착한 흑연섬유직물 전극은 저항이 0.006Ω/cm로서 코팅하지 않은 흑연섬유직물 보다 전기전도성이 약 20배 증가하였다. 탄소나노튜브를 전기영동법으로 흑연섬유직물의 표면에 전착한 전극은 비표면적이 넓고 부식성이 강한 고전도성의 우수한 미생물전해전지용 전극으로 사용 할 수 있을 것으로 판단된다.