Seismic fragility functions for unreinforced masonry buildings were derived based on the incremental dynamic analysis of eight representative inelastic numerical models for application to Korea's earthquake damage estimation system. The effects of panel zones formed between piers and spandrels around openings were taken into account explicitly or implicitly regarding stiffness and inelastic deformation capacity. The site response of ground motion records measured at the rock site was used as input ground motion. Limit states were proposed based on the fraction of structural components that do not meet the required performance from the nonlinear static analysis of each model. In addition to the randomness of ground motion considered in the incremental dynamic analysis explicitly, supplementary standard deviation due to uncertainty that was not reflected in the fragility assessment procedure was added. The proposed seismic fragility functions were verified by applying them to the damage estimation of masonry buildings located around the epicenter of the 2017 Pohang earthquake and comparing the result with actual damage statistics.
Many Korean domestic masonry structures constructed since 1970 have been found to be vulnerable to earthquakes because they lack efficient lateral force resistance. Many studies have shown that the brick and mortar suddenly experience brittle fracture and out-of-plane collapse when they reach the inelastic range. This study evaluated the seismic retrofitting of non-reinforced masonry with Hybrid Super Coating (HSC) and Cast, manufactured using glass fiber. Four types of specimen original specimen (BR-OR), one layered HSC (BR-HS-O), two-layered HSC (BR-HS-B), one layered HSC, and Cast (BR-CT-HS-O) were constructed and analyzed using compression, flexural tensile, diagonal compression, and triplet tests. The specimen responses were presented and discussed in load-displacement curves, maximum strength, and crack propagation. The compressive strength of the retrofit specimens slightly increased, while the flexural tensile strength of the retrofit specimens increased significantly. In addition, the HSC and Cast also produced a considerable increase in the ductile response of specimens before failure. Diagonal compression test results showed that HSC delayed brittle cracks between the mortar and bricks and resulted in larger displacement before failure than the original brick. The triplet test results confirmed that the bonding strength of the retrofit specimens also increased. The application of HSC and Cast was found to restrain the occurrence of brittle failure effectively and delayed the collapse of masonry wall structures.
Nonlinear static analysis and preliminary evaluation were performed in this study to evaluate the seismic performance of unreinforced masonry buildings subjected to various soil conditions based on the revised Korean Building Code. Preliminary evaluation scores and nonlinear static analyses indicated that all buildings were susceptible to collapse and did not reach their target performance. Therefore, retrofit of those building models was carried out through a systematic procedure to determine areas to be strengthened. It was possible to make most building models satisfy performance objectives through the reinforcement alone of damaged external shear walls. However, the application of a preliminary evaluation procedure to retrofit design was found to be too conservative because all the retrofitted building models verified with nonlinear static analysis failed to satisfy performance objectives. Therefore, it is possible to economically retrofit unreinforced masonry buildings through the fortification of external walls if a simple evaluation procedure that can efficiently specify vulnerable parts is developed.
Since the collapse of historical masonry structures in Europe in the late 1990’s, the interests in understanding the long-term effect of masonry under sustained compressive stresses have increased. That requires combining the significance of time-dependent effects of creep with the effect of damage due to overstress to realize the evolution of cracks and then failure in masonry. Meanwhile, composite analysis of masonry columns was proven effective for realizing ultimate strength capacity of masonry column. In this study, a simplified mechanical model with step-by-step in time analysis was proposed to incorporate the interaction of damage and creep to estimate the maximum stress occurred in masonry. It was examined that the interaction of creep and damage in masonry can accelerate the failure of masonry.
In Korea, most existing school buildings have been constructed with moment frames with un-reinforced infill walls designed only considering gravity loads. Thus, the buildings may not perform satisfactorily during earthquakes expected in Korea. In exterior frames of the building, un-reinforced masonry infill walls with window openings are commonly placed, which may alter the structural behavior of adjacent columns due to the interaction between the wall and column. The objective of this study is to evaluate the seismic performance of existing school buildings according to the procedure specified in ATC 63. Analytical models are proposed to simulate the structural behavior of columns, infill walls and their interaction. The accuracy of the proposed model is verified by comparing the analytical results with the experimental test results for one bay frames with and without infill walls with openings. For seismic performance evaluation, three story buildings are considered as model frames located at sites having different soil conditions ( , , , , ) in Korea. It is observed that columns behaves as a short columns governed by shear due to infill masonry walls with openings. The collapse probabilities of the frames under maximum considered earthquake ranges from 62.9 to 99.5 %, which far exceed the allowable value specified in ATC 63.
본 연구에서는 학교건물에서 나타나는 전형적인 조적조 채움벽 골조의 내진성능을 등가 스트럿 모델을 통해 평가하였다. 순수골조모델, 중심스트럿모델 및 편심스트럿모델의 세 가지 모형화 방법을 채택하였고, 문헌상으로 얻을 수 있는 범위의 스트럿 강성과강도를 적용하여 거동특성의 차이를 분석하였다. 역량스펙트럼에 의해 산정된 성능점에서의 변위 및 손상정도에 큰 차이가 나타났으며,채움벽은 순수골조모델과 비교할 때 중심스트럿모델에서는 유리하게, 편심스트럿모델에서는 불리하게 작용하는 것으로 나타났다. 최종극한변위에서의 거동 또한 모형화 방법 및 재료 속성에 따라서 최대강도, 층간변위, 파괴된 부재 수 및 위치 등에 큰 차이가 나타났다.
본 연구에서는 기존 건물의 내진성능평가 요령의 개선안을 바탕으로 비보강 조적조 건물의 내진성능을 평가하였다. 평가 절차는 예비평가, 1차상세평가, 2차상세평가의 3단계로 구성되어 있으며, 보수적인 평가로 시작하여 점차 상세한 평가를 실시한다. 본 연구의 목적은 이와 같은 단계적 평가의 실효성을 검증하고 평가결과와 조적조 벽량과의 상관관계를 분석하는 것이다. 연구를 위해 10개의 2층 비보강 조적조 건물을 선택한 후 3단계 절차를 이용하여 단계별로 성능평가를 수행하였다. 연구 결과, 예비평가와 1차상세평가간에 성능수준이 절차의 의도와 역행해서 나타났다. 따라서 앞으로 본 연구 결과에서 나타난 각 평가 단계별 문제점을 보완할 필요가 있다.
비보강 조적조는 비균일 재료로 이루어진 합성재료에 가까우므로 그 거동이 하중종류와 구조물의 손상 정도에 따라서 매우 달라지게 된다. 본 연구에서는 여러 차례의 모의 지진을 받는 구조물의 손상거동이 어떻게 전개되어 가는지 살펴보는 간단한 방법을 제시한다. 특히, 시간영역 자료를 여러 구간으로 나누어서 주파수가 어떻게 변화해 가는지 살펴보는 부분 FFT방법을 이용하였다. 또한, 주파수와 강도와의 관계식을 이용하여 단자유도계의 이선형모델도 유도하였다. 본 연구에서 제시하는 이러한 방법들을 이용하여 비보강 조적조의 비탄성 성질들을 합리적으로 구할 수 있었다.
본 연구는 우리나라에서 저층 주거용 건물로 널리 사용되고 있는 2층 규모의 비보강조적조 의 1/3 축소 모델에 대한 진동대 실험을 수행한 것이다. 본 연구의 주목적은 내진설계가 이루어지지 않은 조적조 건물의 내진거동을 살펴보고, 실험적 자료를 확보하는데 있다. 실험대상구조물은 횡방향으로는 대칭이지만 종방향으로는 약간 비대칭이고, 비교적 강한 다이어프램을 나타내는 콘크리트 슬래브로 되어있다. 실험체에 대한 모의 지진하중은 가속도를 점차 증가시켜가면서 종방향으로 가력하였다. 실험에서 얻은 구조물의 동적 응답자료는 진동대의 입력지진과 연관지어서 분석하였다. 더욱이 성능기초설계를 위한 성능수준을 제시하였다. 실험결과 1층에서의 전단파괴가 지배적이고 상부층은 강체거동을 보여주었다. 또한 균열 발생후에도 상당한 강도와 변형능력을 보유하고 있는 것으로 나타났다.
본 연구의 목적은 지진에 의한 비보강 조적조의 거동을 평가하는 것이다. 효율적인 평가를 위하여 유사동적해석법을 사용하였다. 저층의 비보강 조적조에 대하여 지진하중에 의한 지반-구조물의 상호작용에 따른 영향을 평가하기 위하여 단단한 지반에 놓여진 구조물과 연약한 지반에 좋여진 구조물을 비교하였다. 그 결과 연약한 지반위에 놓인 구조물의 층 전단력과 밑면 전단력이 상대적으로 증가하는 것으로 나타났다. 또한 현재 사용되고 있는 내진기준에 주어진 약산식에 따라 해석을 수행할 경우 연약한 지반에 놓인 건물이 경우 전단력을 과소평가 할 수 있는 것으로 나타났다.
본 논문은 국내의 비보강 조적조에 대해 내진성능을 조사하기 위하여 재료측성 평가를 위한 실험연구를 수행하였다. 실험결과를 바탕으로 조적용 모르터의 압축강도식을 제안하였다. 또한 조적용 모르터의 배합비에 따른 조적조 프리즘의 압축강도 특성을 비교하였다. 조적조 프리즘의 압축강도로써 조적조의 탄성계수를 구할 수 있는 약산식을 제시하였으며, 약산식을 사인장 조적조 실험을 통하여 구한 전단탄성계수값과 비교하여 볼 때 타당성을 가지고 있다고 판단된다. 실험결과로써 나온 재료특성 값을 바탕으로 2층 조적조 다세대 주택에 대한 유사동적해석을 수행하였다. 해석결과로 얻은 전단응력과 전단파괴가 나타난 사인장 조적조의 허용전단응력은 유사한 것으로 확인되었다.
우리 나라의 주거 건물의 많은 부분을 차지하는 조적조 건물은 저층이므로 내진 설계에 대한 지침이 마련되어 있지 않다. 그러나 조적조 건물의 경우 저층이라 하더라도 구조특성상 수평하중에 대한 저항능력이 매우 약하므로 내진 설계에 대한 기준이 요구된다. 일반적으로 내진설계 시 동적 해석을 수행하면 많은 시간이 소모되므로 실무자들에게 등가정적해석법을 제시하여 내진설계 시 편의를 제공하고 있다. 그러나 저층 조적조 건물은 일반적인 건물과는 거동 특성이 다르므로 저층 조적조 건물에 적용할 수 있는 해석법을 제시하고자 한다. 본 논문에서는 개구부의 비율에 따른 조적벽의 연성도, 강도 및 고유주기를 구하여 반응수정계수와 고유주기를 비교하여 우리 나라의 조적조 건물에 적합한 반응수정계수와 고유주기 산정식을 제안하였다.
현재 국내에는 조적조 건물에 대한 내진규준이 마련되어 있지 않다 반면 최근 들어 한반도에 발생하는 지진의 반도수는 계속증가하고 있어 조적조 건물에 대한 지진하중에 의한 평가가 이루어져야 한다. 본 연구에서는 2층 조적조 건물에 국내에서 발생 가능한 최대지진가속도인 0.12g의 지진하중을 적용한 유한요소해석법에 의한 방법으로 동적해석을 수행한 결과 2층에 비하여 1층에서 불안전한 거동이 발생하였다 특히 개구부 주위 및 테두리 보와 조적벽의 경계부분에서 허용응력을 초과하여 균열이 발생함을 알 수 있었다.
본 연구의 목적은 비선형 동적해석을 통한 국내 비보강 조적조의 내진성능을 평가하는데 있다. 보다 정밀한 내진성능 평가를 위해 조적벽체의 파괴모드를 고려한 비선형 이력모델을 이용하고자 하나, 선행연구의 비선형 이력모델은 정적반복가력해석에 대한 검증만이 수행 되었다. 이에 본 연구에서는 진동대실험과 동적해석 결과를 비교하여 제안한 비보강 조적조 비선형 해석모델의 신뢰성을 검증한 다음, 국내 비 보강 조적조 건축물의 비선형 동적해석을 수행하고 결과를 분석하여 내진성능을 평가하였다. 그 결과, 1층의 조적조 건축물의 경우 개구부율 에 관계없이 비교적 지진피해가 작은 반면, 2층 이상의 국내 비보강 조적조 건축물의 대부분이 국내에 발생가능한 지진에 취약하였다.
조적조 건축물은 국내 소규모 주택의 많은 부분을 차지하지만 취성적 거동 및 낮은 연성능력으로 현재에는 사용빈도가 많이 낮아졌다. 그럼에도 불구하고 조적조 건축물의 낮은 건축비, 재료의 친환경성은 국외를 중심으로 새롭게 각광 받으면서 구조적 단점을 해결하고자 많 은 연구가 진행 중이다. 본 연구에서는 조적벽체 및 교차부 실험체를 제작하여 신축줄눈 유⋅무에 따른 구조적 거동의 차이를 확인하고, 연결철물 (스틸플레이트, 스테인리스 트위스트바) 삽입에 따른 보강효과를 검증하였다. 실험결과를 통해 스틸플레이트를 삽입한 실험체는 내력이 증가되어 실험체의 강성이 향상되었으며, 스테인리스 트위스트바를 삽입한 실험체는 연성능력이 향상되어 취성파괴가 발생하지 않 아, 연결철물 삽입에 따른 보강효과는 우수한 것으로 나타났다.
The purpose of this study is to evaluate the seismic performance of unreinforced masonry(URM) building more accurately. For that, the nonlinear hysteresis models of preceding research did not validate for dynamic analysis. Therefore, in this study, we compared the results of the shaking table test and dynamic analysis. As a result, nonlinear hysteresis models are expected to be applicable.
Recently a lot of strong earthquakes are happened in China. By the report of the Earthquakes that can be seen the URM buildings are destroyed by the highest rate. Thus in this study, the performance and vulnerable of URM houseing buildings in China, and use them to describe the derivative and evaluate the seismic performance have been analyzed.
In this study, rational prediction models for the effective compressive strengths of HSC corner and interior columns with intervening NSC slabs are developed. A structural analogy between HSC column-NSC slab joint and brick masonry is used to develop the prediction models. In addition, the aspect ratio of slab thickness to column dimension and the surrounding slab confinement effect are considered in the models. The proposed prediction model is verified by comparison with experimental results and various prediction expressions. As a result, with average test-to-predicted ratios of 1.00 for HSC corner columns and 1.09 for interior columns, the proposed equation provides superior predictions over all of the existing effective strength prediction approaches including KCI structural concrete design code(2012).
최근 전 세계적으로 지진의 발생빈도가 증가하는 경향을 보이며 일부는 지진해일을 동반한 대규모 피해가 발생하고 있다. 2004년 12월 26일 인도네시아 수마트라 지진해일은 약 30만명의 인명피해와 100억 달러 이상의 재산피해가 발생하였으며, 2011년 3월 11일 일본 동북지방 태평양 연안 지진해일은 15,800여명의 인명피해와 25조엔 이상의 재산피해가 발생했다. 또한 국내에서도 일본의 서해 해역에서 발생한 아키타지진(1983년 5월, M7.7)과 오쿠시리지진(1993년 7월, M7.8)의 영향으로 국내 동해안 일대에 피해가 발생한 사례가 있다. 이러한 추세에도 불구하고 국내에서는 지진해일에 대한 국내 건축물의 대비책은 전무한 실정이다. 따라서 본 연구에서는 국내 건축물에 80%이상을 차지하고 있는 연안가 조적조 건축물에 대한 안전성을 예상 침수심 깊이에 따라 평가하였다.