검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 102

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, the inertial electromagnetic actuator (IEA) and the FxLMS (filtered-x least mean square) method were applied to study vibration control using the active mount. IEA was designed and manufactured for the experiment, and FxLMS algorithm was developed to evaluate control performance and mount dynamic characteristics. For the vibration control experiment, active mounts were installed at the top and bottom, and the lower active mount controls the force transmitted to the structure by the excitation signal from the upper active mount. The experiment was performed by simultaneously exciting three frequencies in three axes. From the experimental results, it was confirmed that the force measured at the lower active mount when the actuator is off is greatly reduced when the actuator is on, and that vibration reduction in the vertical z-axis is more effective than vibration reduction in the x-y plane.
        4,000원
        2.
        2022.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many piping systems installed in the power plant are directly related to the safety and operation of the plant. Various dampers have been applied to the piping system to reduce the damage caused by earthquakes. In order to reduce the vibration of the piping system, this study developed a steel coil damper (SCD) with a straightforward structure but excellent damping performance. SCD reduces the vibration of the objective structure by hysteretic damping. The new SCD damper can be applied to high-temperature environments since it consists of steel members. The paper introduces a design method for the elastoplastic coil spring, which is the critical element of SCD. The practical applicability of the design procedure was validated by comparing the nonlinear force-displacement curves calculated by design equations with the results obtained from nonlinear finite element analysis and repeated loading test. It was found that the designed SCD’s have a damping ratio higher than 25%. In addition, this study performed a set of seismic tests using a shaking table with an existing piping system to verify the vibration control capacity on the piping system by SCD. Test results prove that the SCD can effectively control the displacement vibration of the piping system up to 80%.
        4,000원
        3.
        2021.06 구독 인증기관 무료, 개인회원 유료
        이 논문은 드럼 세트를 구성하는 악기들 중 스네어 드럼에 사용되는 진동제어장치의 크기와 질량의 변화에 따라 음량과 음색 및 엔벨로프가 어떻게 변화되는지에 대해 연구하였다. 스네어 드럼을 사용하여 연주하는 드럼 연주자 및 음향 엔지니어들에게 진동제어장치의 변화에 따라 도출되는 소리의 특성을 제공하여 표현하고 싶은 스네어 음색을 구사할 수 있는 정보를 제공하는 목적을 가지고 있으며 스네어 드럼의 음색을 구사하는 능력이 향상된다는 것은 음악의 장르와 스타일에 따라 연주자 및 음향 엔지니어의 표현 능력이 향상될 수 있는 긍정적 영향을 끼칠 수 있다. 실험 결과 진동제어장치를 사용하여 면적과 질량의 변화를 준 환경에서 라우드 니스의 변화는 발생하지 않았으며, 주파수 응답의 변화는 미미한 수준이었고, 엔벨로프의 길 이에서는 큰 변화가 발생하였다. 실험과정에서 실제로 듣는 청감상의 스네어 드럼 음색 변화는 매우 크게 나타났으며 특히 질량보다는 면적의 변화에 따른 실험환경에서 큰 음색 변화가 있었다. 결과적으로 진동제어장치는 실질적으로 엔벨로프에만 관여하며, 스네어 드럼은 엔벨 로프의 길이가 짧아 엔벨로프의 앞부분에서 발생하는 음색이 더 중요하다는 일부 인식과 달 리, 엔벨로프의 뒷부분도 인간이 지각하는 음색에 큰 영향을 준다는 연구들이 도출되었다.
        5,400원
        6.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.
        4,000원
        7.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        바람하중을 받는 고층건물의 진동을 저감하기 위한 다양한 진동제어장치가 적용되어왔다. 제어의 주된 목적은 구조물의 응답을 저감하는 것이지만 효율적인 제어력의 산정 또한 중요한 설계요구사항중의 하나이다. 능동형제진장치를 중심으로 제어력 산정은 크게 시스템의 H2, H∞-norm을 분리하여 독립적으로 결정되어 왔다. 보다 효율적인 제어력 산정을 위해서 두 가지 norm을 혼합한 제어알고리듬이 개발되었고 이를 LMI 표준형으로 변환하여 보다 용이하게 최적 해를 제공하게 되었다. 본 연구에서는 제어 후 구조물의 요구 등가감쇠비를 H∞-norm을 이용하여 구속하고 제어력만을 별도로 H2-norm을 이용한 제어알고리듬을 개발하여 능동형뿐만 아니라 수동형제진장치에도 적용하는 방안을 제시하였다. 본 연구에서 제안된 혼합제어 기법을 능동질량감쇠기와 카고메 트러스 댐퍼가 설치된 구조물에 적용하여 수치적으로 검증하였으며, 수치해석 결과로부터 능동형뿐만 아니라 수동형제진장치설계를 LMI표준형으로 전환하는 기법을 적용하면 제어이득뿐만 아니라 감쇠용량도 효율적으로 산정 가능함을 알 수 있었다.
        4,000원
        8.
        2018.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A base isolation system is widely used to reduce seismic responses of low-rise buildings. This system cannot be effectively applied to high-rise buildings because the initial stiffness of the high-rise building with the base isolation system maintains almost the same as the building without the base isolation system to set the yield shear force of the base isolation system larger than the design wind load. To solve this problem, the mid-story isolation system was proposed and applied to many buildings. The mid-story isolation system has two major objectives; first to reduce peak story drift and second to reduce peak drift of the isolation story. Usually, these two objectives are in conflict. In this study, a hybrid mid-story isolation system for a tall building is proposed. A MR (magnetorheological) damper was used to develop the hybrid mid-story isolation system. An existing building with mid-story isolation system, that is “Shiodome Sumitomo Building” a high rise building having a large atrium in the lower levels, was used for control performance evaluation of the hybrid mid-story isolation system. Fuzzy logic controller and genetic algorithm were used to develop the control algorithm for the hybrid mid-story isolation system. It can be seen from analytical results that the hybrid mid-story isolation system can provide better control performance than the ordinary mid-story isolation system and the design process developed in this study is useful for preliminary design of the hybrid mid-story isolation system for a tall building.
        4,000원
        9.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, an experimental study was carried out for vibration control of cable bridges with structurally flexible characteristics. For the experiment on vibration control, a model bridge was constructed by reducing the Seohae Grand Bridge and the shear type MR damper was designed using the wind load response measured at Seohae Grand Bridge. The shear type MR damper was installed in the vertical direction at the middle span of the model bridge, and dynamic modeling was performed using the power model. The tests of the vibration control were carried out by non-control, passive on/off control and Lyapunov control method on model bridge with scaled wind load response. The performance of the vibration control was evaluated by calculating absolute maximum displacement, RMS displacement, absolute maximum acceleration, RMS acceleration, and size of applied power using the response (displacement, acceleration, etc.) from the model bridge. As a result, the power model was effective in simulating the nonlinear behavior of the MR damper, and the Lyapunov control method using the MR damper was able to control the vibration of the structure and reduce the size of the power supply.
        4,300원
        10.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, a study on reducing the weight of the robot arm, which enables a high-speed operation and enables reducing the energy consumption has been actively carried out. A lightweight robot arm is hard to control because it behaves like a flexible body rather than a rigid body. This paper proposes a controller which combines a PID controller and a fuzzy logic controller for control the position and vibration of the flexible robot arm. In order to show the effectiveness of the proposed controller, MSC.ADAMS computational model which incorporates the finite element flexible robot arm model is developed, and is used for performing simulations. Simulations are carried out with two reference inputs, and three end masses. Simulation results show that the proposed controller controls the position and vibration of the flexible robot arm adaptively without being affected by the reference input and the end mass.
        4,000원
        11.
        2016.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the case where a MR-damper is employed for vibration control, it is important to decide on how much control capacity should be assigned to it against structural capacities (strength and load, etc). This paper aims to present a MR-damper's control capacity suitable for the capacities of the structure which needs to be controlled. First, a two span bridge was built equipped with a MR-damper, which constitutes a two-span MR-damper control system. Then, inflicting an earthquake load on the system, a basic experiment was performed for vibration control, and a simulation was also carried out reflecting specific control conditions such as MR-damper and rubber bearing. The comparison of the results against each other proved their validity. Then, in order to calculate an optimal control capacity of the MR-damper, structural capacity was divided into eleven cases in total and simulated. For each case, an additional load of 30 KN was inflicted everytime, thereby increasingly strengthening structural capacity. As a result of the study, it was found that the control capacity of MR-damper of 30 KN was safely secured only with lumped mass of more than 150 KN(case 6). Therefore, it is concluded the MR-damper showed the best performance of control when it exerted its capacity at around 20% of structural capacity.
        4,000원
        12.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper is concerned with an experimental research to control of random vibration caused by external loads specially in cable-stayed bridges which tend to be structurally flexible. For the vibration control, we produced a model structure modelled on Seohae Grand Bridge, and we designed a shear type MR damper. On the center of its middle span, we placed a shear type MR damper which was to control its vibration and also acquire its structural responses such as displacement and acceleration at the same site. The experiments concerning controlling vibration were performed according to a variety of theories including un-control, passive on/off control, and clipped-optimal control. Its control performance was evaluated in terms of the absolute maximum displacements, RMS displacements, the absolute maximum accelerations, RMS accelerations, and the total power required to control the bridge which differ from each different experiment method. Among all the methods applied in this paper, clipped-optimal control method turned out to be the most effective to reduces of displacements, accelerations, and external power. Finally, It is proven that the clipped-optimal control method was effective and useful in the vibration control employing a semi-active devices such MR damper.
        4,200원
        13.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Damped outrigger systems have been proposed as a novel energy dissipation system to protect tall buildings from severe earthquakes and strong wind loads. In this study, semi-active damping devices such as magnetorheological (MR) dampers instead of passive dampers are installed vertically between the outrigger and perimeter columns to achieve large and adaptable energy dissipation. Control performance of semi-active outrigger damper system mainly depends on the control algorithm. Fuzzy logic control algorithm was used to generate command voltage sent to MR damper. Genetic algorithm was used to optimize the fuzzy logic controller. An artificial earthquake load was generated for numerical simulation. A simplified numerical model of damped outrigger system was developed. Based on numerical analyses, it has been shown that the semi-active damped outrigger system can effectively reduce both displacement and acceleration responses of the tall building in comparison with a passive outrigger damper system.
        4,000원
        14.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the concept of damped outrigger system has been proposed for tall buildings. But, structural characteristics and design method of this system were not sufficiently investigated to date. In this study, the dynamic response control performance of outrigger damper has been analyzed. To this end, a simplified analysis model with outrigger damper system has been developed. An artificial wind of 1000 seconds with 0.1 second time steps was generated by using a Kaimal spectrum. Analysis results show that outrigger damper system is more effective up to 20-23% in the control of dynamic response compared to conventional outrigger system. The increase of outrigger damper capacity usually results in the improved control performance. However, it is necessary to select that proper stiffness and damping values of the outrigger damper system because, the outrigger damper having large capacity is result in heavy financial burden.
        4,000원
        15.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        장경간 교량의 낮은 감쇠비로 인하여 발생하는 구조물의 진동은 구조물의 안전성 및 사용성에 부정적인 영향을 미친다. 본 연구에서는 시공 중인 교량에 지배적으로 발생하는 연직 방향 진동을 제어하기 위하여 능동형 질량댐퍼(AMD)를 연구하였다. 대상 사장교의 동특성을 조사하기 위하여 모드 해석이 수행되었으며 이를 바탕으로 제어 성능과 설치 공간에 적합한 AMD를 설계하기 위하서 LQR(Linear Quadratic Regulator) 제어 알고리즘을 사용하였다. 성능 검증을 위하여 건설 단계의 대상 구조물과 AMD를 1/10.5의 상사비로 축소시킨 시작품을 설계, 제작하였으며, 시스템 식별을 수행하여 Linear Quadratic Gaussian (LQG) 제어 알고리즘을 적용하였다. 성능 실험 결과 AMD 제어 시에 높은 제어 효과를 구현하였으며, 실험 결과를 수치해석과 비교를 통하여 제어기 설계의 타당성을 확인하였다.
        4,000원
        17.
        2012.12 KCI 등재 구독 인증기관·개인회원 무료
        In this study, a theoretical investigation of optimized sleeper spacing which can suppress resonances of a railway track is attempted. To achieve this, we introduced a minimization problem in which the objective function is given by the wave transmittance and the design variable is defined by sleeper distribution. In the analysis the rail is modeled by a Timoshenko beam and the sleeper is represented by a mass. The infinite track analysis is realized by attaching the transmitting boundaries at both ends of the finite optimization region. Through numerical analyses the sleeper spacing effective in reduction of the transmittance is discussed. Furthermore, the feasibility of the proposed method is validated in the aspect of vibration reduction through response analyses for a harmonic load.
        18.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recently, sky-bridge are often applied to high-rised adjacent buildings for pedestrian bridge. the seisnic response control of adjacent buildings have been studied and magneto-rheological(MR) fluid dampers have been applied to seismic response control. In this study, vibration control effect of the MR damper connected adjacent buildings has been investigated. Adjacent building structures with different natural frequencies were used as example structures. Two typed of control methods, displacement based or velocity based, are applied to determinate control force of MR damper. In this numerical analysis, it has been shown that displacement-based control algorithm is more effective than velocity-based control algorithm for seismic response control of adjacent buildings. And, when displacement-based control method is applied to control of adjacent buildings, the control of building occurred large displacement is more efficient in reducing the seismic response.
        4,000원
        19.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구진은 최근 U자 형태인 액체댐퍼의 수직관을 다수의 셀(사각 기둥)로 나누어 셀 상부를 개폐함에 따라 다양한 고 유진동수를 쉽게 재현하는 새로운 멀티셀 액체댐퍼를 제시하였다. 이러한 댐퍼를 1층 건물 모형에 설치하여 진동대 실험을 수행하여 건물응답이 감소되는 것을 검증하였다. 64층의 풍응답인 가속도를 제어할 수 있도록 댐퍼를 설계하기 위하여 건 물을 1자유도계로 축소하였다. 가속도 기반 상사비인 1/20를 적용하여 1층 건물 모형과 새로운 댐퍼를 제작하였다. 설계 진 동수인 0.65Hz가 구현되도록 모형건물의 질량과 강성을 쉽게 조절할 수 있도록 탈부착식으로 제작하였다. 모형건물은 중량 을 부담하는 질량부와 하부에 스프링과 LM guide가 설치된 구동부로 나누어서 제작되었다. 18개의 셀을 가지는 액체댐퍼 를 제작하여 고유진동수 조절 범위가 0.65Hz~0.81Hz인 것을 파악하였다. 대형 진동대에 설치한 모형건물의 일방향 가진을 통하여 모형의 응답을 측정하고 모형상부에 멀티셀 액체댐퍼가 설치되었을 경우 모형의 응답을 측정하여 비교하였다. 진동 대 가속도를 입력과 모형건물의 가속도를 출력으로 하는 전달함수를 통해 결과를 나타내었다. 예상한 바와 같이 멀티셀 액 체댐퍼의 고유진동수를 건물의 진동수에 동조시켰을 경우 건물의 가속도 응답이 감소함을 알 수 있었다.
        4,000원
        1 2 3 4 5