탄소중립을 달성하기 위해 이산화탄소를 포집, 활용, 저장하는 CCUS (carbon capture, utilization, and storage) 기 술이 주목받고 있다. 본 연구에서는 광물 탄산화 공정을 통해 이산화탄소를 탄산염으로 고정하고, 이를 전이금속 탄산염 기반 리튬이온배터리 (LIB) 음극재로 적용하였다. CO2를 탄산염으로 고정후, 이를 이용해 FeCO3를 제작하고, rGO와 PVP와 복합 화하여 음극활물질에 적용하였다. rGO는 전기전도도를 높이고 입자의 응집을 방지해 부피 팽창을 완화했으며, PVP는 계면 활성제로서 입자 표면을 안정화하여 구조적 안정성을 강화하였다. FeCO3-PVP-rGO 복합체 기반한 음극재에 대한 전기화학 테스트를 진행한 결과, FeCO3/rGO 복합체는 1,620 mA/g의 전류 밀도에서 50 사이클 이후에도 400 mAh/g의 용량을 유지하 였다. 본 연구는 CO2를 고부가가치 배터리 소재로 전환하여 차세대 에너지 저장 기술에 기여할 가능성을 시사한다.
The following study aims to estimate the configuration ratio of the ion compounds that identifies the cause of fine dust and ways to reduce it. In this study, the physical and chemical properties of fine particles in a tunnel and the configuration form of ionic composition were interpreted to establish reasonable measurement for air quality management. Seasonal measurements were performed by collecting samples from the Mia sageori subway station. Chemical Mass Balance (CMB) model was used to estimate the configuration ratio of ions in this study. The results showed that the test performed outside showed about 56.4% of total ion, with (NH4)2SO4, NH4NO3, CaCO3 and NaCl showing concentrations of 2.138 μg/m3, 1.957 μg/m3, 1.697 μg/m3 and 1.600 μg/m3, respectively, while the results indoor had CaCO3, NH4NO3, (NH4)2SO4 and NaCl showing concentrations of 2.272 μg/m3, 2.204 μg/m3, 1.656 μg/m3 and 1.342 μg/m3, respectively, about 65.1% of total ion. During the usage of tunnel, it was found that CaCO3, NH4NO3, (NH4)2SO4 and MgCO3 showed concentrations of 3.464 μg/m3, 1.732 μg/m3, 1.698 μg/m3 and 0.582 μg/m3, respectively, total ion of 70.2% was presented.