검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        1.
        2021.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500°C for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 oC for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20% apparent porosity and 96.9% relative density.
        4,200원
        2.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The conversion of carbon preforms to dense SiC by liquid infiltration is a prospectively low-cost and reliable method of forming SiC-Si composites with complex shapes and high densities. Si powder was coated on top of a 2.0wt .% Y2O3-added carbon preform, and reaction bonded silicon carbide (RBSC) was prepared by infiltrating molten Si at 1,450oC for 1-8 h. Reactive sintering of the Y2O3-free carbon preform caused Si to be pushed to one side, thereby forming cracking defects. However, when prepared from the Y2O3-added carbon preform, a SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C → SiC reaction at 1,450oC, 3C and 6H SiC phases, crystalline Si, and Y2O3 were generated based on XRD analysis, without the appearance of graphite. The RBSC prepared from the Y2O3-added carbon preform was densified by increasing the density and decreasing the porosity as the holding time increased at 1,450oC. Dense RBSC, which was reaction sintered at 1,450oC for 4 h from the 2.0wt.% Y2O3-added carbon preform, had an apparent porosity of 0.11% and a relative density of 96.8%.
        4,000원
        3.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicidebased composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and β-SiC as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed β-SiC are fabricated using pressureless sintering. The relative density of the specimens sintered at 1500oC for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.
        4,000원
        4.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reaction-bonded silicon carbide (RBSC) is a SiC-based composite ceramic fabricated by the infiltration of molten silicon into a skeleton of SiC particles and carbon, in order to manufacture a ceramic body with full density. RBSC has been widely used and studied for many years in the SiC field, because of its relatively low processing temperature for fabrication, easy use in forming components with a near-net shape, and high density, compared with other sintering methods for SiC. A radiant tube is one of the most commonly employed ceramics components when using RBSC materials in industrial fields. In this study, the mechanical strengths of commercial RBSC tubes with different sizes are evaluated using 3-point flexural and C-ring tests. The size scaling law is applied to the obtained mechanical strength values for specimens with different sizes. The discrepancy between the flexural and C-ring strengths is also discussed.
        4,000원
        5.
        2017.11 구독 인증기관·개인회원 무료
        탄화규소(Silicon Carbide, SiC) 세라믹 멤브레인은 알루미나 원료의 세라믹 멤브레인보다 높은 친수성을 나타내어 동일한 압력 하에 높은 수투과도 유지가 가 능하다. 이러한 탄화규소 세라믹 멤브레인을 혐기성 생물막 반응조(Anaerobic Membrane Bioreactor, AnMBR)에 설치하여 고농도의 생물반응조 운전에도 불구하고 낮고 안정된 운전압력을 유지할 수 있었으며, 막오염 현상의 획기적인 저감이 가능하였다. 본 연구에서는 도시하수와 음폐수를 혼합 처리함에 있어서 탄화규소 세라믹 멤브레인을 적용한 AnMBR의 운전결과를 알루미나 세라믹 멤브레인을 적용한 경우와 비교 평가하였다.
        6.
        2017.11 구독 인증기관·개인회원 무료
        Ceramic membranes can be applied under extreme operating conditions such as low pH, high pressure and high temperature. In particular SiC has excellent mechanical properties and also has excellent properties related to membrane performance. However, high processing temperature increases cost of SiC products and thus limit’s its use. In this study oxidation bonding technique was used to fabricate cost-effective SiC microfiltration membrane at low temperature. The oxidation behavior at different thermal treatments was related with pore morphology and ultimately the membrane permeability. We have found that the membrane made by coating of oxidation bonded SiC layer over clay-bonded SiC support, sintered at 1000-1100°C could make a defect-free microfiltration membrane with pure water permeability above 700 LMH per bar. The membrane has narrow pore size distribution with average pore size about 0.1 μm.
        7.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tri-isotropic (TRISO) coatings on zirconia surrogate beads are deposited using a fluidized-bed vapor deposition (FB-CVD) method. The silicon carbide layer is particularly important among the coated layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO-coated particles. In this study, we obtain a nearly stoichiometric composition in the SiC layer coated at 1400oC, 1500oC, and 1400oC with 20 vol.% methyltrichlorosilane (MTS), However, the composition of the SiC layer coated at 1300-1350oC shows a difference from the stoichiometric ratio (1:1). The density decreases remarkably with decreasing SiC deposition temperature because of the nanosized pores. The high density of the SiC layer (≥ 3.19 g/cm2) easily obtained at 1500oC and 1400oC with 20 vol.% MTS did not change at an annealing temperature of 1900°C, simulating the reactor operating temperature. The evaluation of the mechanical properties is limited because of the inaccurate values of hardness and Young’s modulus measured by the nano-indentation method.
        4,000원
        8.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        RBSC (reaction-bonded silicon carbide) represents a family of composite ceramics processed by infiltrating with molten silicon into a skeleton of SiC particles and carbon in order to fabricate a fully dense body of silicon carbide. RBSC has been commercially used and widely studied for many years, because of its advantages, such as relatively low temperature for fabrication and easier to form components with near-net-shape and high relative density, compared with other sintering methods. In this study, RBSC was fabricated with different size of SiC in the raw material. Microstructure, thermal and mechanical properties were characterized with the reaction-sintered samples in order to examine the effect of SiC size on the thermal and mechanical properties of RBSC ceramics. Especially, phase volume fraction of each component phase, such as Si, SiC, and C, was evaluated by using an image analyzer. The relationship between microstructures and physical properties was also discussed.
        4,000원
        9.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silicon carbide(SiC) layer is particularly important tri-isotropic (TRISO) coating layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO coated particle. The high temperature deposition of SiC layer normally performed at 1500-1650˚C has a negative effect on the property of IPyC layer by increasing its anisotropy. To investigate the feasibility of lower temperature SiC deposition, the influence of deposition temperature on the property of SiC layer are examined in this study. While the SiC layer coated at 1500˚C obtains nearly stoichiometric composition, the composition of the SiC layer coated at 1300-1400˚C shows discrepancy from stoichiometric ratio(1:1). 3-7μm grain size of SiC layer coated at 1500˚C is decreased to sub-micrometer (< 1μm) -2μm grain size when coated at 1400˚C, and further decreased to nano grain size when coated at 1300-1350˚C. Moreover, the high density of SiC layer (≥3.19g/cm3) which is easily obtained at 1500˚C coating is difficult to achieve at lower temperature owing to nano size pores. the density is remarkably decreased with decreasing SiC deposition temperature.
        4,000원
        12.
        2008.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reaction bonded silicon carbide (RBSiC) is an important engineering ceramic because of its high strength and stability at elevated temperatures, and it is currently fabricated using reasonably cheap manufacturing processes, some of which have been used since the 1960s. However, forming complicated shapes from these materials is difficult because of their poor workability. The purpose of this work is to join the reaction-bonded SiC parts using a preceramic polymer as joint material. The manufacturing of ceramic material in the system Si-O-C from preceramic silicon containing polymers such as polysiloxanes has attained particular interest. The mixtures of preceramic polymer and filler materials, such as SiC, Si and MoSi, were used as a paste for the joining of reaction sintered SiC parts. The joining process during the annealing in Ar atmosphere at were described. The maximum strength of the joints was 63 MPa for the specimen joined with 10 vol.% of and 30 vol.% of SiC as filler materials. Fracture occurred in the joining layer. This indicates that the joining strength is limited by the strength of the joint materials.
        4,000원
        19.
        1998.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        장경비가 큰 탄화규소를 탄소와 규소간의 고온연소반응으로 제조하기 위하여 공정변수에 따른 연소거동과 미세조직의 변화를 조사하였다. 연소합성된 생성물은 주로 β-SiC이며 연소반응이 충분히 진행되지 못하였을 경우에는 미량의 잔류 반응물과 α-SiC가 관찰되었다. 생성된 탄화규소의 평균입도는 약 5μm로 작았으며, 1300˚C 이상의 예열 조건에서 장경비가 30이상인 탄화규소를 합성할 수 있었다. 압분 강도가 69MPa인 분말의 성형체에서 평균 연소 온도와 평균 전파 속도는 각각 약 1425˚C와 2.1mm/sec 범위이며, 연소 온도는 흑연 분말을 사용하였을 경우가 탄소 섬유를 사용한 경우보다 약 10˚C 높았다. 연소 반응을 임의로 중단시킨 시편의 계면을 EDX와 Auger 전자 현미경으로 분석한 결과 상호 확산층이 관찰되지 않았다. 이는 탄화규조의 연소합성이 용해-석출 모델에 의하여 진행됨을 시사한다. 예열 온도에 따른 연소 반응 중의 온도 분포를 유한 요소법으로 해석함으로써 2500˚C의 초기 연소 개시 온도에 대하여 예열 온도 300˚C에서는 연소파가 거의 전파할 수 없으며 예열 온도가 1300˚C에서는 시료 내부에 자체 전파가 가능한 2000˚C이상의 온도 구역이 존재함을 알았다.
        4,000원
        1 2