Desorption reaction characteristics of the used activated carbons collected from manufacture of rubber and plastics products in Shiwha/Banwal industrial complex were investigated. Desorption reactions were analyzed based on the data obtained from a thermogravimetric analyzer. Activation energies and reaction orders for desorption reaction characteristics of the used activated carbons were estimated by employing the Friedman method and the Freeman-Carroll method. It was found that the activation energies were 24.7∼41.3 kJ/㏖ in the Friedman method and 13.9∼24.4 kJ/㏖ in the Freeman-carroll method, and reaction orders were 0.3∼1.4.
Desorption characteristics of waste activated carbons collected from chemicals manufacturing industries in Shiwha/Banwal industrial complex were investigated. Activated carbons were decomposed in a thermogravimetric analyzer (TGA) at 513K with heating rate of 10 ℃/min under nitrogen atmosphere. Activation energies and reaction orders for desorption, from the waste activated carbon were estimated by employing Friedman method and Freeman-Carroll method. It was found that the reaction orders of desorption in waste activated carbons were 0.27-1.69, and activation energies were 15.2-45.7 kJ/mol in Friedman method and 13.7-17.1 kJ/mol in Freeman-Carroll method.
Magnetic activated carbon was prepared by adding a magnetic material to activated carbon that had been prepared from waste citrus peel in Jeju. The adsorption characteristics of an aqueous solution of the antibiotic trimethoprim (TMP) were investigated using the magnetic activated carbon, as an adsorbent, and response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design affecting TMP adsorption with their input parameters (TMP concentration: 50~150 mg/L; pH: 4~10; temperature: 293~323 K; adsorbent dose: 0.05~0.15 g). The significance of the independent variables and their interaction was assessed by ANOVA and t-test statistical techniques. Statistical results showed that TMP concentration was the most effective parameter, compared with others. The adsorption process can be well described by the pseudo-second-order kinetic model. The experimental isotherm data followed the Langmuir isotherm model. The maximum adsorption capacities of TMP, estimated with the Langmuir isotherm model were 115.9-130.5 mg/g at 293-323 K. Also, both the thermodynamic parameters, △H and △G, have both positive values, indicating that the adsorption of TMP by the magnetic activated carbon is an endothermic reaction and proceeds via an involuntary process.
The adsorption characteristics of bisphenol A (BPA) were investigated using activated carbon based on waste citrus peel (which is abandoned in large quantities in Jeju Island), denoted as WCP-AC, and surface-modified with various P2O5 concentrations (WCP-SM-AC). Moreover, coconut-based activated carbon (which is marketed in large amounts) was surface-modified in an identical manner for comparison. The adsorption equilibrium of BPA using the activated carbons before and after surface modification was obtained at nearly 48 h. The adsorption process of BPA by activated carbons and surface-modified activated carbons was well-described by the pseudo second-order kinetic model. The experimental data in the adsorption isotherm followed the Langmuir isotherm model. With increasing P2O5 concentration (250-2,000 mg/L), the amounts of BPA adsorbed by WCP-SM-AC increased till 1,000 mg/L of P2O5; however, above 1,000 mg/L of P2O5, the same amounts adsorbed at 1,000 mg/L of P2O5 were obtained. With increasing reaction temperature, the reaction rate increased, but the adsorbed amounts decreased, especially for the activated carbon before surface modification. The amounts of BPA adsorbed by WCP-AC and WCP-SM-AC were similar in the pH range of 5-9, but significantly decreased at pH 11, and increased with increasing ionic strength due to screening and salting-out effects.
Waste citrus peel-based activated carbon (WCAC) was prepared from waste citrus peels by activation with KOH. The removal of Cu and Pb ions from aqueous solution by the prepared WCAC was investigated in batch experiments. The solution pH significantly influenced Cu and Pb adsorption capacity and the optimum pH was 4 to 6. The adsorption of Cu and Pb ions by WCAC followed pseudo-second-order kinetics and the Langmuir isotherm model. The maximum adsorption capacity calculated by Langmuir isotherm model was 31.91 mg/g for Cu and 92.22 mg/g for Pb. As the temperature was increased from 303 K to 323 K, the ΔG˚ value decreased from –7.01 to –8.57 kJ/mol for Cu ions and from –0.87 to –2.06 kJ/mol for Pb ions. These results indicated that the adsorption of Cu and Pb by WCAC is a spontaneous process.
This study discusses regeneration of mercury-contaminated, activated carbon from adsorption in the mercuryrecovery process. Mercury in activated carbon was desorbed by thermal treatment, and the regeneration efficiency was confirmed by mercury content and iodine adsorption comparing new and spent activated carbon. Up to 95% of mercury desorbed and up to 86% adsorption performance regenerated at 673 K. Therefore, it is expected that activated carbon can be reused many times by regenerating it through thermal treatment without disposing of mercury-containing activated carbon.
수은의 배출로부터 국민의 건강과 환경을 보호하기 위해 국제수은협약(Minamata Convention on Mercury)이 채택되었다. 수은은 다양한 경로를 통해 환경으로 배출되며 의도적 배출원의 경우 그 양이 상당하여 적정처리 기술 개발이 필요한 시점이다. 활성탄은 가격대비 탁월한 흡착성능 때문에 다양한 산업시설에서 활용되고 있으며 국내의 경우 지속적인 사용량 증가를 나타내고 있다. 이러한 활성탄의 사용 추세와 더불어 환경으로 배출되는 폐 활성탄 또한 증가하고 있다. 일부 폐 활성탄은 지정폐기물로 관리되고 있으나 처리 및 관리에 많은 비용이 소모되어 환경적・경제적으로 문제가 되고 있다. 이에 본 연구에서는 환경으로 배출되는 수은의 양을 줄임과 동시에 다양한 산업시설에서 활용되고 배출되는 수은함유 폐 활성탄을 재생하는데 목적을 두었다. 본 연구에서는 수은으로 오염된 폐 활성탄을 재생해보고자 다양한 온도 조건에서 운반가스로 질소(N2, 0.1L/min)를 주입하였으며 0.2atm, 1atm으로 압력조건을 설정 하였다. 또한 각각의 열처리 조건에서 온도 유지시간별 재생효율을 평가하기 위해 온도 유지시간을 10min, 30min, 60min으로 달리 하여 열처리 실험을 진행 하였다. 열처리 후 활성탄은 US EPA Method를 이용하여 수은 함량을 분석하였고 추가적으로 요오드 흡착성능 실험을 통해 수은으로 오염된 활성탄의 재생효율을 평가하였다. 열처리된 활성탄의 수은 함량은 초기 폐 활성탄(30 ppm) 대비 최대 1%까지 줄어드는 것을 확인하였고 요오드 흡착성능의 경우 초기 폐 활성탄 흡착성능의 최대 90%까지 재생되는 것으로 확인되었다. 환경적・경제적 성과를 높이기 위해 현재까지 진행된 연구에 더불어 재생된 활성탄을 재사용한 후 추가적인 재생 실험을 진행하여 재생한계점을 도출해 내는 것이 필요할 것으로 사료된다. 또 한 재생실험으로 폐 활성탄에서 분리된 수은 및 수은 화합물의 추가적인 안정화 작업 및 적정처분이 필요할 것으로 사료된다.
Adsorption using highly porous and highly functionalized sorbents is a straightforward removal technology currently being employed, however the range of contaminants is limited. A novel sorbent was synthesized from activated carbon and Zr-based UiO66 metal organic framework to remove both cationic and oxyanionic metals from aqueous solutions. The composite was characterized using FSEM-EDS, FT-IR, XRD, and TGA, and showed successful integration of UiO66 on the surface of activated carbon. Batch adsorption tests with ICP-OES reveal that the composite has removal efficiency >95% for Pb (II), Cu (II), Se (IV), and As (V). The hybrid material is a promising sorbent for the removal of both cationic and oxyanionic metals for wastewater purification.
This research was performed to evaluate the recycling characteristics by physico-chemical analysis of wasted and regenerated activated carbons. Three types of waste carbons for gas treatment, drinking water purification, and wastewater treatment were sampled and analyzed. Heavy metals concentrations of As, Zn, Pb and Cd for all regenerated carbons satisfied the standard criteria of the granular activated carbon for drinking water purification. The sieve residues of the regenerated activated carbons for drinking water purification and wastewater treatment were in the range of 85.3 ~ 97.7% and 97.7 ~ 99.7%, respectively. Some samples of the regenerated activated carbons were not able to satisfy the standard criteria for methylene blue adsorption ( 150 mL/g) and iodine adsorption ( 950 mg/g). All activated carbons for gas treatment and drinking water purification satisfied the standard criteria for hardness and bulk density. One of three activated carbon samples for drinking water purification did not satisfied the standard criteria for phenol number and ABS (alkyl benzene sulfonate) number. The observed results concluded that there was no problem of heavy metals accumulation in the regenerated activated carbon, but partially against standard criteria such as sieve residue, moisture content, methylene blue adsorption, and iodine adsorption.
The activated carbon was prepared from waste citrus peels using NaOH. With the increase of NaOH ratio, iodine adsorptivity and specific surface area of the activated carbon prepared were increased, but activation yield was decreased. The optimal condition of activation was at 300% NaOH and 700℃ for 1.5 hr. For the activated carbon produced under optimal condition, iodine adsorptivity was 1,006 mg/g, specific surface area was 1,356 m2/g, and average pore diameter was 20~25Å. From the adsorption experiment for benzene vapor in fixed bed reactor, it was found that the adsorption capacity of activated carbon prepared from waste citrus peel was higher than that of activated carbon purchased from Calgon company. This result implied that the activated carbon prepared from waste citrus peel could be used for gas phase adsorption.
Activated carbon was prepared from waste citrus peels by chemical activation with ZnCl2. The optimal condition of carbonization was at 300℃ for 1.5 hr. Activation experiments with carbonized samples prepared at optimal carboniztion condition were carried out under various conditions such as activation temperature of 400 to 900℃, activation time of 0.5 to 2.0 hr, and ZnCl2 ratio of 100 to 300%. In order to investigate the physical properties of the activated carbons prepared, iodine adsorptivities and specific surface areas were measured and their morphologies were observed from scanning electron microscopy. As ZnCl2 ratio increased, activation yield decreased, while iodine adsorptivity and specific surface area increased. The optimal condition of activation was at 300% ZnCl2 ratio and 300℃ for 1.5 hr, and then iodine adsorptivity and specific surface area was measured as about 862 mg/g and 756 m2/g, respectively. SEM photography showed that the surface morphology was changed and many active pore were produced by chemical activation.
폐활성탄을 토양개량제로 활용하기위한 기초시험으로서 시호의 포트시험을 실시한 결과 시호의 생장은 폐활성탄(activated charcoal) 10∼30%가 첨가되었을 때 경장과 경태가 크고 분얼수가 많아 생육이 양호하였다. 근의 생장과 비대는 폐활성탄(activated charcoal) 10-30% 첨가되 었을때 주근장과 근직경이 크고, 근중이 무거워서 증수되는 경향이었다. 이와 같은 이유는 활성탄 시용에 의한 토양의 보수력과 보비력이 양호하여 물리성이 향상된 것으로 생각되며 이보다 더 낮은 농도나 높은 농도에서는 효과가 적은 것으로 나타났다. 이상과 같은 결과로 보아 시호를 재배할 경우 폐활성탄(activated charcoal)의 효과가 인정되어 약초의 종류에 따른 농도별 시험이 계속적으로 이루어 져야 할 것으로 사료된다.
약용작물인 한약재로 수요가 많고 식용으로 이용 가능한 더덕과 도라지를 폐 활성탄을 사용하여 재배할 경우 생산성 을 높이고 고품질을 생산 할 수 있을 것으로 기대되어 본 시험을 수행한 결과는 다음과 같다. 1. 지상부의 생장은 활성탄(Activated Charcoal)처리가 무처리에 비하여 경장과 경직경이 커서 생육이 양호하였으며, 특히 활성탄 20%가 첨가되었을 때 효과가 인정 되었다. 2. 더덕과 도라지의 개화는 각 처리 공히 90%이상이 개화되었고, 그 중에서도 특히 활성탄(Activated Charcoal)10%와 20%처리가 각각 95%가 개화되어 개화율이 높은 경향이었으나 유의성은 인정되지 않았다. 3. 근의 생장은 활성탄(Activated Charcoal)이 20%첨가되었을 때 주근장과 주근폭이 크고 근의 무게가 더 증가되는 경향이었다. 이상과 같은 결과로 보아 더덕과 도라지를 재배할 경우 활성탄(Activated Charcoal)의 효과가 인정되어 약초의 종류에 따른 농도별 시험이 계속적으로 이루어 져야 할 것으로 사료된다.