본 연구는 소량 다품종의 화학물질을 다루는 연구실의 안전관리를 강화하기 위해 전과정관리 체계 알고리즘을 제안하는데 그 목적이 있다. 이를 위해 최근 10년간의 연구실 사고 사례, 관련 법규, 선행 연구 및 FGI (Focus Group Interview) 연구실 현황 분석을 통해 요구사항을 도출하고 전과정 관리체계를 개발하였으며, 이를 기반으로 전과정관리체계 알고리즘을 설계, 개발하여 연구실에 적용 및 검증하였다. 연구실 화학물질 사고 예방을 위한 안전관리는 우선 연구실 내 화학물질의 종류와 양을 정확히 파악하는 것부터 시작해야 한다. 이를 위해 화학물질관리의 전 과정을 단계별로 나누어 관리체계를 수립하고, 각 단계에서 활용되는 물질 정보, 법규 정보, 화학물질 성상별 분리 정보를 다루는 데이터베이스 항목 추출 및 알고리즘 개발 방안을 제시하였다. 본 알고리즘을 세 개의 기관에서 적용한 결과, 사고 예방 및 법규 준수 측면에서 높은 효과를 보인 것으로 평가되었으나 사고 발생률에 미치는 유의한 영향에 대해 알기 위해서는 더 많은 적용 연구가 필요하다. 본 연구에서 개발한 전과정관리체계 알고리즘의 활용은 실험실 안전과 사회적 안전을 도모하는 동시에 기업의 ESG 경영의 중요한 요소 중 하나인 기업활동의 리스크 관리와 책임경영에 도움이 될 것으로 기대한다.
In this study, the performances of H2S, NH3, and HCl sensors for real-time monitoring in small emission facilities (4, 5 grades in Korea) were evaluated at high concentration conditions of those gases. And the proper approach for the collection of reliable measurement data by sensors was suggested through finding out the effect on sensor performances according to changes in temperature and humidity (relative humidity, RH) settings. In addition, an assessment on sensor data correction considering the effects produced by environmental settings was conducted. The effects were tested in four different conditions of temperature and humidity. The sensor performances (reproducibility, precision, lower detection limit (LDL), and linearity) were good for all three sensors. The intercept (ADC0) values for all three sensors were good for the changes of temperature and humidity conditions. The variation in the slope value of the NH3 sensor showed the highest value, and this was followed by the HCl, H2S sensors. The results of this study can be helpful for data collection by enabling the more reliable and precise measurements of concentrations measured by sensors.
In this study, the hydrogen sulfide removal performance of materials that can be used instead of NaOH was evaluated to reduce the amount of NaOH, a harmful substance used in chemical cleaning methods. Three alternative chemical agents were evaluated: commercially available chemical-based CB, enzyme-based EB, and natural substance-based NB. The hydrogen sulfide removal performance evaluation consisted of three lab tests: the EL608 method, a method using a bag, a method using a sensor and a chamber, and a field test conducted on a scrubber in operation in the actual field. As a result of evaluation by the EL608 Method, CB was 92.3% (±2.9%), EB 60.5% (±5.8%), and NB 88.3% (±3.6%), similar or somewhat similar to NaOH (5%) 99.8% (0.1%). In the evaluation of the hydrogen sulfide removal performance using Bag, the Michaelis-Menten coefficient was CB 4.30 and EB 5.30, lower than NaOH 6.60, and the affinity for hydrogen sulfide was evaluated to be stronger. Even in the method using the sensor and chamber, CB and EB showed similar hydrogen sulfide removal performance of NaOH, but NB showed low treatment performance. In the evaluation using the scrubber in the actual field, the treatment efficiency of CB and EB was higher than that of NaOH under all hydrogen sulfide inlet concentration conditions. If microorganisms grow on the packing material filled inside the scrubber, treatment efficiency may decrease. In order to prevent this phenomenon, the microbial growth inhibitory function of alternative materials was evaluated, and CB, EB, and NB were all superior to NaOH. As a result of this study, it was shown that CB and EB can replace NaOH because they have excellent performance in removing hydrogen sulfide and inhibiting microbial growth.
This study analyzed the factors affecting the effectiveness of the Chemical Hazard Risk Management (CHARM). A survey was conducted on 104 learners who participated in the Risk Assessment training course at Occupational Safety and Health Training Institute. Through a self-administered questionnaire, the effect of personal characteristics, corporate characteristics, and safety and health level of the company on the effectiveness of chemical risk assessment was investigated. As a result of statistical analysis, the safety and health level of the company had a positive (+) effect on the effectiveness of Chemical Hazard Risk Management(CHARM), but personal characteristics and corporate characteristics had no relation to it. This study can be used as basic data for further research related to chemical risk assessment in workplaces.
This study was conducted to select target fish species as baseline research for accumulation analysis of major hazardous chemicals entering the aquatic ecosystem in Korea and to analyze the impact on fish community. The test bed was selected from a sewage treatment plant, which could directly confirm the impact of the inflow of harmful chemicals, and the Geum River estuary where harmful chemicals introduced into the water system were concentrated. A multivariable metric model was developed to select target candidate fish species for hazardous chemical analysis. Details consisted of seven metrics: (1) commercially useful metric, (2) top-carnivorous species metric, (3) pollution fish indicator metric, (4) tolerance fish metric, (5) common abundant metric, (6) sampling availability (collectability) metric, and (7) widely distributed fish metric. Based on seven metric models for candidate fish species, eight species were selected as target candidates. The co-occurring dominant fish with target candidates was tolerant (50%), indicating that the highest abundance of tolerant species could be used as a water pollution indicator. A multi-metric fish-based model analysis for aquatic ecosystem health evaluation showed that the ecosystem health was diagnosed as “bad conditions”. Physicochemical water quality variables also influenced fish feeding and tolerance guild in the testbed. Eight water quality parameters appeared high at the T1 site, indicating a large impact of discharging water from the sewage treatment plant. T2 site showed massive algal bloom, with chlorophyll concentration about 15 times higher compared to the reference site.
Despite the consumption of disinfectants have been increased by COVID-19 pandemic, the fate of the chemicals in aquatic food webs are still unclear. In order to understand the trophic transfer of the chemicals, the concentration of disinfectants including six benzalkonium chloride (BACs) and five didecyldimethylammonium chlorides (DDACs) were measured at the Geum (2020), Han (2021), and Yeongsan River (2021), before and after rainfall. The highest concentration of ΣBACs (mainly C12 and C14) and ΣDDACs (mainly C10 and C14) were observed in the Han River, followed by Yeongsan River, Geum River Estuary, and Gapcheon. After rainfalls, both concentration and detection frequency were decreased in all sites. Although the BAC and DDAC seems to be accumulated in organisms, they were bio-diluted rather than magnified in the aquatic food web with the biomagnification factor (BMF) of less than 1, trophic magnification slope (TMS) from - 0.236 to 0.001, and trophic magnification factor (TMF) from 0.85 to 1.01.
In spite of lab safety act for over 10 years, over 100 safety accidents in the laboratory have been constantly occurring. The ideal safety management system is to prevent accidents by differential classifying and managing laboratory regulatory materials according to the risk level. In order to approach this system, in-depth interviews with safety managers were first conducted to identify the current status of safety management in domestic university laboratories. And then through comparative analysis of safety management systems in domestic and foreign laboratories, a new regulatory substance classification standard based on the analysis of the hazards and the classification of risk grades, and a safety management system are proposed. From this study, it will contribute to the creation of a safe laboratory environment by differential classification and management laboratory regulatory materials based on the risk level.
The risk of various hazardous substances in aquatic environment comprises not only the concentration of substances in the environmental medium but also their accumulation in fish through complex food web and the health risks to humans through the fish. In Korea, the monitoring of residual toxicant in aquatic ecosystems began in 2016 following the enforcement of the Acts on registration and evaluation for the management of chemicals used in daily life (consumer chemical products), and attention has been paid to potentially hazardous substances attributed to them. Recently, studies have been carried out to investigate the distribution of these hazardous substances in the ecosystem and calculate their emission factors. These include the accumulation and transport of substances, such as detergents, dyes, fragrances, cosmetics, and disinfectants, within trophic levels. This study summarizes the results of recently published research on the inflow and distribution of hazardous substances from consumer chemical products to the aquatic environment and presents the scientific implication. Based on studies on aquatic environment monitoring techniques, this study suggests research directions for monitoring the residual concentration and distribution of harmful chemical substances in aquatic ecosystems. In particular, this study introduces the directions for research on trophic position analysis using compound specific isotope analysis and trophic magnification factors, which are needed to fulfill the contemporary requirements of selecting target fish based on the survey of major fish that inhabit domestic waters and assessment of associated health risk. In addition, this study provides suggestions for future biota monitoring and chemical research in Korea.
생물 및 화학물질 등의 대량살상무기들을 이용한 테러공격은 매우 위협적인 테러공격 가운데 하나이다. 미국의 분류에 따르면 대량살상무기 는 테러공격에 이용되었을 때 다수의 사상자들을 발생시킬 수 있는 화학 물질, 생물학물질, 방사능과 핵물질, 그리고 이러한 물질들을 이용해 만들어진 폭발물을 의미한다. 이와 같은 대량살상무기가 테러공격에 이용 되는 것에 대한 대응책으로 미국정부는 테러리스트나 악의적인 행위자들로부터 이와 같은 물질들에 대한 접근을 차단하고, 대량살상무기들과 관련된 기술적 트렌드를 파악·대응하며, 그리고 대량살상무기관련 물질들을 취급 저장하는 정부기관들과 민간 기업들의 대응능력 강화를 위한 대책을 마련, 운용하고 있다. 이와 같은 미국 정부의 대량살상무기의 대응사례는 국내의 대테러정책에 좋은 참고사례가 된다. 국내의 경우, 대테러정책과 관련하여 테러이용 수단의 안전관리강화에 대한 지적과 논의가 계속되고 있다. 이 연구는 이와 같은 맥락에서 미국 연방정부의 생물, 화학물질 관리 사례에 대해 연구하고 시사점을 도출하였다. 특히 이 연구는 미국의 생물 및 화학물질의 안전관리사례와 법률 등을 분석하였고, 이에 더불어 대테러활동 지원을 위해 설립된 연구기관의 과학적이고 혁신적인 활동을 소개하였다. 연구 수행을 위해 다양한 관련 학술논문과 정부보고서 등을 문헌분석 하였다. 연구의 결론과 논의 부분에서 이 연구의 분석결과를 토대로 국내에 적용될 만한 정책대응을 제안하였다.
This study aimed to investigate the characteristics of odor-causing substances in Yeosu national industrial complex, which is designated as an “Odor management Area,” in 2019 and the surrounding area. The sampling sites were divided into three areas: five sites within the industrial complex (Management area), one site within the borders of the complex (Boundary area), and two sites within residential areas (Affected area) affected by odors. The odor compounds were collected from March to September at dawn, daytime, and night. The analytical items were meteorological data, complex odor, legally-designated 22 odor compounds and other VOCs. Complex odor was exceeded on the limit three occasions at two sites in the management area. Ammonia, two types of sulfides, three types of aldehydes, and five VOCs were detected to be within the emission standards. Ammonia was the most frequently detected compounds. Aldehydes and sulfur compounds made a relatively high contribution to the level of odors. Therefore, aldehydes and sulfur compounds should be reduced first in order to prevent odors from occurring.