본 연구에서는 콘크리트의 내구성 및 낮은 인장강도를 향상시키기 위해 개발된 폴리비닐알콜(PVA) 혼입 시멘트 복합 체의 내약품성을 평가하였다. 시멘트 복합체에 대한 PVA 혼입률은 0%, 1.0%, 1.2%로 설계되었다. 각 혼입률에 따른 시멘트 복 합체의 압축강도, 인장강도, 휨강도를 측정하였다. 결과적으로 1.2% 혼입률에서 압축강도는 1.3배, 인장강도는 5.6배, 휨강도는 17.9배 증가하였다. 내약품성 실험을 위해 염화칼슘, 황산나트륨, 그리고 황산 용액에 시멘트 복합체를 침지시킨 후 30일, 40일, 50일 후 질량 소실률을 측정하여 내화학성을 평가하였다. 내화학성 실험 결과, PVA 혼입은 약품의 침투를 방지하여 시멘트 복 합체의 내화학성을 향상시키는 것으로 나타났다. 총체적으로, PVA 혼입은 시멘트 복합체의 내화학성을 향상시키는 동시에 강도 특성을 제공하는 것으로 확인되었다.
There are more than 30,000 chemical substances handled in domestic university laboratories. Among them, hazardous materials are selected and managed as designated substances by the standards of 19 Ministries and 16 Acts. However, domestic safety-related laws and regulations are used to manage industrial risk factors based on industrial activities. In case of installing a university chemical laboratory in accordance with the installation standards applicable to general workplaces. It is not suitable to use as a laboratory installation standard that can be applied to a chemical laboratory installed at a university such as a problem occurs in applying to a university using a small quantity of dangerous substances in a small amount. In order to establish the laboratory structure and facility standards that are appropriate for the laboratory characteristics and apply systematic laboratory safety, the National Security Administration shall apply the special handling standard of chemical experiment to places where handling less than 30 times the designated quantity of chemical substances for chemical experiments. On August 2, 2016, the regulations for the enforcement of the Dangerous Goods Safety Management Act and the standards for the structure and facilities of the university chemical laboratory were enacted. In this study, we investigated the domestic chemical substances laws and regulations to determine the chemical substances that are over-regulated in the relevant laws, and define them as substances against accidents. The management criteria for the substances were analyzed. The R value for the designation of the designated quantity by the concept of the space in the management standard was calculated.
To fabricate a precise micro metal mold, the electrochemical etching process has been researched. We investigated the electrochemical etching process numerically and experimentally to determine the etching tendency of the process, focusing on the current density, which is a major parameter of the process. The finite element method, a kind of numerical analysis, was used to determine the current density distribution on the workpiece. Stainless steel(SS304) substrate with various sized square and circular array patterns as an anode and copper(Cu) plate as a cathode were used for the electrochemical experiments. A mixture of H2SO4, H3PO4, and DIW was used as an electrolyte. In this paper, comparison of the results from the experiment and the numerical simulation is presented, including the current density distribution and line profile from the simulation, and the etching profile and surface morphology from the experiment. Etching profile and surface morphology were characterized using a 3D-profiler and FE-SEM measurement. From a comparison of the data, it was confirmed that the current density distribution and the line profile of the simulation were similar to the surface morphology and the etching profile of the experiment, respectively. The current density is more concentrated at the vertex of the square pattern and circumference of the circular pattern. And, the depth of the etched area is proportional to the current density.
고온 용융염 전해환원 공정은 후행핵연료 주기의 대안 공정인 파이로공정의 산화물 사용후핵연료의 확대 를 위해 필수적인 공정이다. 사용후핵연료는 다성분 산화물로 이루어져 있으며 각 산화물은 전해환원 공정 에서 화학적 특성에 따라 산소를 잃게 된다. 본 연구에서는 건식분말화 공정 이후 전해환원 반응기에 도입되 는 사용후핵연료 조성을 기준으로 각 금속-산소 시스템을 독립적인 이상고용체로 가정하여 전해환원 반응거동을 계산하였다. 전해환원을 Li의 환원과 이어지는 Li과의 화학반응의 결합으로 산정하여 U을 비롯한 금 속 환원 거동을 계산하였다. 계산결과 대부분의 산화물들은 전해환원 공정에 의해 금속으로 전환되는 것으 로 예상되었다. 란타나이드 원소들의 경우 Li2O의 농도가 낮아지면 금속 전환율이 높아지나 대부분 산화물로 존재하는 것으로 나타났다. 추가적으로 U3O8의 전해환원 거동에 대해 Li의 확산과 Li과의 화학반응을 고려하 여 반실험적 모델이 제시되었다. 실험데이터를 활용하여 매개변수를 결정하였으며 시간에 대한 환원율 및 전류에 대한 99.9% 환원 시간을 계산하였다.
This research modified the checklist used in the universities in USA, England and Korea considering the current situation of Korea, and conducted case studies upon each section of appointed chemical laboratories based on 4M criteria, which stands for Machine, Media, Man and Management. The purpose of the studies is to assess how dangerous the laboratories are and to contribute to prevention of accidentsin the laboratories as well as reducing loss of lives and property. The result of this research found out the harmful and hazardous factors based on the 4M-type checklist and predicted the dangerousness as it multiplies possible frequency by intensity. Protective equipment, safety facilities in laboratories, emergency exit and compressed gas cylinder are found to be more dangerous, so the result shows that it is desirable to improve ventilation, safety facilities and circumstances of the laboratory through the investment.
두 가지 유해인자가 동시에 작용할 때 생물체에 나타나는 영향은 길항작용에서 상승작용에 이르기까지 폭넓게 나타난다. 상승작용의 생물학적 중요성에도 불구하고 유해인자간의 복합작용을 설명할 수 있는 구체적 연구결과들은 별로 없는 실정이다. 본 연구는 고온과 기타 환경 유해인자의 복합작용에 의해 생물체에 나타내는 반응에 있어서의 규칙성을 도출해 내기 위하여 수행되었다. 고온과 이온화방사선, 자외선, 초음파 등의 동시작용에 관한 효모세포 실험결과를 분석하였으며
지표에 노출된 암석은 지속적으로 풍화를 받게 되고 이러한 영향으로 암석의 공학적 안정성이 약해 지게 된다. 특히 풍화가 진행되면서 암석의 표면은 풍화에 의해서 변화를 일으키고 이러한 표면 변화는 암석 으로 구성된 지반의 공학적 안전성에 영향을 미치게 된다. 또한, 풍화를 받은 암석에서 생성되는 화학종은 주 변환경에 직접적인 영향을 미치거나 구조물에 영향을 미치게 된다. 광산지역과 같이 암석이 노출된 지역에서 는 풍화에 의해 생성된 화학종이 주변 자연환경에 심각한 영향을 미치기도 한다. 본 연구에서는 이러한 관점 에서 동결/융해 실험을 활용한 풍화가속 실험을 이미 풍화를 받은 암석과 신선한 암석을 대상으로 실시하고 각 암석의 표면 변화를 다초점 레이저 현미경으로 관찰하고 IC/ICP-MS를 활용하여 화학종 생성에 대한 분 석을 실시하였다. 풍화가 진행됨에 따라 표면의 거칠기는 완화되는 것을 확인하였고 주변환경에 영향을 미칠 수 있는 화학종은 풍화를 받는동안 양이 증가하는 것을 확인하였다. 본 연구 결과는 암석이 노출된 지역에서 의 공학적/환경학적 안전성을 평가하는 기초 자료로 활용될 수 있을 것이다.
물과 지방에서 발생하는 화학적 이동의 인공물을 확인하기 위해 다양한 MRI parameter를 적용하여 실험하였다. MRI의 1.5T와 3.0T에서 parameter와 bandwidth 및 부호화 변화에 따른 영상을 스캔하여 SNR, CNR을 비교하였다. MRI 영상에서 물과 기름의 화학적 이동의 인공물의 발생을 확인할 수 있었고, 3.0T보다 1.5T에서의 영상이 인공물이 비교적 줄어드는 것을 확인할 수 있었다. Bandwidth의 폭이 넓어짐에 따라 인공물이 줄어드는 것을 확인할 수 있었다. 따라서 MRI검사에서 화학적 이동의 인공물을 감소하기 위해서는 주 자장의 세기가 약하고, bandwidth의 폭을 넓히는 것이 적절할 것으로 생각된다.
In this study, Corrosion behavior in mortar was observed by the passage of time by using EIS method. As a result of EIS experiment, equivalent circuit and changes of Impedance parameter could be observed. In addition, it was confirmed that impedance of rebar in mortar and corrosion rate according to the amount of NaCl were different.
In this study, chemical resistance of sulfur polymer was evaluated for surface protection of structures required chemical resistance. From the test result, the mix proportion contained 10% of fly ash and 10% of silica sand which used as a filler to reduce shrinkage showed small reduction of bond strength and good chemical resistance.
‘식물의 광합성'은 생명 과학 영역에서 다루는 개념이지만, 실험을 통해 출입하는 기체를 확인하기 위해서는 BTB 용액의 색변화에 대한 화학적 이해가 바탕이 되어야 한다. 이 연구의 목적은 BTB 용액을 사용한 광합성 실험에서 BTB 용액의 변색 과정과 관련하여 ’광합성' 실험의 문제를 살펴보고, 이를 개선하기 위한 자료를 제공하는 것이다. 이를 위해『2007 개정 과학과 교육과정』에 따른 중학교 「과학 1」교과서 8종과 『7차 과학과 교육과정』에 따른 중학교 「과학 2」교과서 8종을 대상으로 실험에 사용된 BTB 용액의 색변화와 이에 대한 설명을 분석하였고, 예비교사 202명을 대상으로 설문을 실시하였다. 교과서 분석 결과, ‘광합성’ 실험에 사용한 BTB 용액의 초기 색깔은 청색과 녹색 두 가지로 나타났으며, 색깔이 같은 BTB 용액을 사용하였음에도 불구하고 광합성 이후의 색변화에 있어서 교과서 별로 다르게 제시하고 있어 적절한 BTB 용액의 선정과 색변화를 판단하는데 혼동의 여지가 있었다. 또한 BTB의 변색에 대한 교과서의 설명은 이산화탄소의 양에 따른 색을 제시하는 방식, 액성에 따른 색을 제시하는 방식 등으로 분류할 수 있었으나, 각 방식은 화학적 이해를 돕기에 미흡한 점이 있었다. 예비 교사들의 BTB 용액의 변색에 대한 응답은 초기 BTB 용액의 색깔이 청색이거나 녹색인 것과 상관없이 광합성 후에 청색으로 된다는 유형 1, 모두 녹색으로 돌아간다는 유형 2, 처음 사용한 BTB 용액의 색깔 즉, 청색은 청색으로 녹색은 녹색으로 돌아간다는 유형 3으로 나눌 수 있었다. 이들의 구체적인 변색 이유를 분석한 결과, 유형 1의 경우, 산소의 발생으로 인해 용액의 액성이 염기성이 된다고 생각하는 비율이 높았으며, 유형 2의 경우, 초기 용액의 액성에 대한 고려 없이 이산화탄소가 사라지면 중성이 되기 때문이라고 인식하고 있었다. 유형별로 화학적 이해의 수준이 다르게 나타났으며, 예비교사의 전공에 따라 유형별 비율은 차이가 있었다. BTB 용액의 색변화에 대한 혼동과 불완전한 이해를 개선하기 위해서는 광합성 실험에 적합한 표준 BTB 용액의 제조 방법을 개발하고, 교과서에서 BTB 용액의 변색 이유에 대한 화학적 설명이 추가적으로 제시될 필요가 있다.
이 연구의 목적은 고등학교 화학Ⅱ 교과서에 제시된 온도에 따른 고체의 용해도 측정 실험의 문제점을 파악하여, 학생들이 재현성 있는 실험 결과와 정상적인 용해도 곡선을 얻을 수 있는 개선 실험을 제시하고자 하는 것이다. 연구를 위하여 화학Ⅱ 교과서의 고체의 용해도 측정 실험을 분석하고, 화학교사를 대상으로 고체의 용해도 측정 실험에 대한 설문 조사를 실시하여, 온도에 따른 고체의 용해도 측정 실험의 문제점을 파악하여 개선 실험을 제시하였다. 연구 결과, 화학Ⅱ 교과서에 제시된 고체의 용해도 측정 실험의 실험 방법은 서로 달랐으며, 화학교사들은 실험 결과에서 오차가 많이 나고 실험 시간이 많이 소요되어서 고체의 용해도 측정 실험을 실험 수업으로 실시하기 어려워하였다. 온도에 따른 고체의 용해도 측정 실험에서 용질과 용매의 질량 측정 방법, 용질이 모두 녹는 온도 측정 방법, 결정 석출 온도 측정 방법 등을 개선한 개선 실험으로 재현성이 있는 실험 결과와 정상적인 용해도 곡선을 얻을 수 있었다.