검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 62

        2.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해양오염사고가 발생하면 해양경찰청에서는 긴급방제에 관한 전략 수립을 위해 유출유 확산 예측모델을 구동한다. 이러한 유출유 확산예측모델은 바람, 해류, 조류 등 해양기상을 기반으로 해상에서 유출유 이동방향과 소멸시간 등을 예측하며, 그 결과를 기 반으로 해양경찰청에서는 방제전략을 수립하고 필요한 방제자원을 동원한다. 이뿐만 아니라 유출유 확산예측모델은 해양경찰청의 해 양환경에 관한 다양한 법률 분야와 연계된 형사법 작용의 기술적 근거를 제공한다. 우선 행정법적 측면에서 해양경찰청이 방제의무자 에게 이행하도록 하는 권력적 행정행위로서의 방제명령 등에 대한 비례성 원칙에 부합하는지를 확인할 수 있고, 이는 행정의무 미이행 에 대한 형사법 작용의 전제 요건이 될 수 있다. 그리고 국제법적 측면에서 관할해역 이원에서 발생한 오염에 대해 국가의 개입여부를 판단할 수 있는 근거를 제공하고, 이는 형사관할권에 대한 판단에 있어 기술적 자료가 될 수 있다. 더불어 형사법적 측면에서는 예측 모델은 해양오염과 유출원 사이의 인과관계를 증명하는 방법으로 활용할 수도 있다. 그리고 기후위기로 친환경선박이 도입되고, 이에 따라 해양오염사고는 인명과 환경에 함께 피해를 주는 복합사고 형태로 변화할 것이다. 이에 따라서 기술적 측면에서 기존 해상에서의 유출유 예측모델은 대기ㆍ해양ㆍ수중에 대한 통합모델로 전환되어야 한다. 그리고 제도적 측면에서 친환경선박의 위험 연료에 대한 관리의무 규정을 마련하여야 하고, 의무이행을 위한 형사정책적 측면에서는 위험연료 유출로 해양환경 위해가 있는 경우에 형사벌 대 상이 될 수 있다. 여기서 통합모델은 환경ㆍ안전이 관한 보호법익 침해를 증명하는 과학적 증거로 활용할 수 있다.
        4,000원
        5.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        선박에는 단열을 위한 발포제가 적용된다. 기존의 발포제에는 지구온난화물질인 수소불화탄소(HFC)를 다량 포함하고 있는 문제점이 있으며, 우리나라는 몬트리올 의정서의 ‘키칼리 개정서’를 채택함에 따라 HFC를 ‘24년부터 ’45년까지 기준 수량의 80% 감 축하기로 결정되었다. 이에, 메틸포메이트 원료는 지구온난화지수가 0(HFC는 960~1,430)으로 향후 친환경발포제로 높은 기대를 갖고 있다. 하지만, 메틸포메이트 발포제의 성능은 원료의 순도 및 주변환경에 높은 영향을 받음으로 각 공정환경에 대한 정확한 분류가 필요하다. 이에, 본 논문에서는 주변환경(온도)과 메틸포메이트 순도에 따라, 총 4개의 케이스를 만들었다. 각 케이스에 대해서 10,010 장의 이미지를 학습하고, 이를 구글넷(GoogLeNet)알고리즘을 이용하여 분류하였다. 분류결과 정확도는 96.8%를 갖고, F1-Score는 0.969 를 갖는 것으로 계산하였다.
        4,000원
        6.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 우리나라 연근해 선박의 친환경 기술 도입이 대기오염물질 저감에 미치는 효과를 분석하고, 이를 통해 향후 정 책 방향을 제안하기 위해 수행되었다. 최근 국제해사기구(IMO)와 정부·기관들은 해양 대기오염 문제를 해결하고 탄소중립 목표를 달 성하기 위해 다양한 친환경 기술의 적용을 촉구하고 있으며, 특히 연근해 운항 선박에서 발생하는 질소산화물(NOx), 황산화물(SOx), 미세먼지(PM)와 같은 주요 오염물질의 저감이 시급한 상황이다. 다양한 대체연료(LNG, 메탄올, 배터리 등)와 후처리기술(DPF)을 시나 리오별로 적용하고, 각 시나리오에서 대기오염물질(PM10, PM2.5)의 배출 감축량을 예측하였다. 분석 결과, 2030년까지는 DPF와 바이오 연료와 같은 즉각 적용 가능한 기술들이 효과적인 저감 수단으로 나타났으며, 2050년까지는 무탄소 연료와 전기 추진 기술의 상용화 가 필수적임을 확인하였다. 친환경 기술 도입이 대기오염물질 배출량에 미치는 영향을 정량적으로 제시함으로써, 해운 분야의 친환경, 탄소중립 달성을 위한 정책적, 기술적 인프라 확충의 필요성을 강조하고 있다. 이를 통해 정부의 지원 및 규제 필요성을 제안하고자 한다.
        4,800원
        8.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 MaxEnt(Maximum Entropy Moedl) 모형을 이용하여 서울 도심 지역에서 너구리(Nyctereutes procyonoides) 출현 지역을 예측하고, 너구리 출몰에 영향을 미치는 환경 요인을 분석하였다. 분석은 2018년부터 2022년까지 수집된 서울시 야생동물센터의 구조 기록을 사용하였다. 토지 피복, 도로 면적, 경사도, 먹이원까지의 거리, 인구 밀도, NDVI(Normalized Difference Vegetation Index), 수역까지의 거리, 초지 면적을 환경 변수로 채택하여 가장 예측력이 높은 모델을 도출하였다. 분석 결과, 너구리 출몰 가능성이 높은 지역은 초지와 나지였고, 도로 밀도가 낮은 지역(<20%)에서 출몰할 가능성이 더 높았다. 또한 너구리는 경사가 완만하고(1.7˚), 먹이원에 가까우며(26.78m), 인구 밀도가 낮은(21.70명 /ha) 지역에서 발생할 가능성이 더 높았다. 다른 요인으로는 낮은 식생 밀도(NDVI 0.17), 하천과의 근접성(32.26m), 넓은 초지 지역(31.14%)에서 너구리가 출몰할 가능성이 높은 것으로 예측되었다. 서울 전역 중 약 65.42㎢(10.96%)가 잠재적인 너구리 발생 지역으로 확인되었으며, 주요 지역은 하천 주변, 산림 경계부, 도시공원 및 인근 초지와 농경지 주변이었다. 이 중 28개 지역(송파구 6개, 강서구 5개, 강남구 4개, 강동구 3개, 서초구 3개, 광진구, 노원구, 동대문구, 동작구, 마포구, 은평구, 중랑구 각각 1개 지역)이 너구리 발생 확률이 가장 높은 곳으로 확인되었다. 본 연구의 결과는 시민과 너구리의 공존 방안을 마련하는 데 중요한 기초 자료를 제공하며, 이를 통한 도시생태 전략 수립의 근거로 활용할 수 있을 것이다.
        4,500원
        9.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        콩과 같은 밭작물은 주로 토양으로부터 수분을 공급받으며 토양 수분 조건에 따라 생육 반응이 민감하게 반응한다. 작물의 생육과 재배 지역의 토양 조건, 기상 등에 따라 적정 토양 수분을 유지하는 것은 작물 생산량의 증가를 위해 중요하다. 따라서, 본 연구에서는 머신러닝 기법을 이용하여 토양 수분 함량 예측 모델을 개발하였다. 깊이에 따른 토양 수분과 외기, 강수량 등 기상 변수와의 상관 관계를 구명하고, 깊이별 토양 수분예측을 위한 부분최소제곱회귀(PLSR) 모델을 알고리즘을 개발하였다. 콩 재배포장의 10cm, 20cm, 30cm 깊이의 토양수분은 FDR 방식의 센서로 측정하였 고, 콩 작물 주변 환경인자(재배환경의 기온, 상대습도, 풍속, 일사량, 일조시간)는 주변의 기상관측소에서 측정된 데이터를 이용하였다. 이를 이용하여 깊이별 미래의 토양수분함량 예측 모델을 개발한 결과, 10cm와 20cm깊이에서 주요 인자는 현재 토양수분함량과 기온이었으며, 30cm 깊이에서의 주요 인자는 현재 토양수분함량과 기온, 풍속으로 나타났다. 토양 깊이가 깊어짐에 따라 토양수분함량 예측 정확도가 향상되었으며, 이는 표면에 가까울수록 토양수분함량이 변화가 크기 때문으로 예상된다. 또한 미래의 토양 수분함량예측시 1시간 후 예측 정확도가 가장 우수하였으며, 이때의 Rv 2와 RMSEV가 10cm 깊이에서 0.993와 1.069%, 20cm 깊이에서 0.994와 0.821% 였으며, 30cm 깊이에서 0.999와 0.149% 였다. 본 연구 결과는 콩 생육환경 진단을 위해 재배 포장의 토양수분함량을 토양층별로 미래의 토양수분함량도 예측이 가능함을 보여준다.
        4,000원
        11.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구는 1세대 스마트 온실의 재배환경 데이터와 장미 절 화의 품질 특성 데이터를 수집하고 그 요인들 간의 상관 관계 를 분석하여 절화수명 예측 및 최적 환경 조성의 기초 자료를 얻고자 수행되었다. 이를 위해, 토경재배(SC) 및 암면배지경 양액재배(RWH) 하우스 각 1개소를 선정하여 1년간 기온, 상 대습도(RH) 및 수증기압차(VPD), 일적산광량(DLI), 근권온도 등의 환경 데이터와 매월 말 수확된 장미 ‘Miss Holland’ 절 화의 품질 특성 데이터를 수집하였으며, 이 데이터와 절화수 명과의 상관관계를 분석하였다. 절화수명은 10월과 11월을 제외하고는 SC 하우스에서 RWH 하우스보다 더 길었다. 절 화수명과 환경 및 생육 특성 간의 상관관계 분석에서 SC 하우 스의 상관계수는 RWH 하우스보다 조금 더 높았으며, 절화수 명 예측을 위한 요소들도 두 하우스 간에 차이가 있었다. SC 하우스의 절화수명 Y=0.848X1+0.366X2-0.591X3+2.224X4- 0.171X5+0.47X6+0.321X7+9.836X8-110.219(X1-X8: 최고 RH, RH 일교차, DLI, pH, Hunter’s b value, EC, 절화 장, 잎 두께; R2=0.544)로 예측되었고, RWH 하우스의 절화수명 Y=-1.291X1+52.026X2-0.094X3+0.448X4-3.84X5+0.624X6 - 8.528X7+28.45(X1-X7: 경경, 야간 VPD, 최고 근권온도, 최 저 근권온도, 기온 일교차, RH 일교차, 최고 VPD; R2=0.5243) 로 예측되었다. 이 두 모델식으로부터 SC 하우스에서는 RH, EC 및 pH가, 그리고 RWH 하우스에서는 근권 온도가 절화수명에 더 큰 영향을 미친다는 것을 추론할 수 있다. 따라서 각 재배 방법에 따라 장미의 절화수명에 더 큰 영향을 미치는 환경적 요인을 효율적으로 관리할 필요가 있다.
        4,900원
        12.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the thermal equilibrium of a motor operated in the sea and the temperature in the equilibrium were studied. To predict the equilibrium temperature in the sea, the cooling performance of the motor was studied by comparing results of analysis and experimental results in the air condition. By this study, the method of prediction of the cooling performance of a motor in various environments could be useful.
        4,000원
        13.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Conventional flipped learning instructional models are operated in a blended learning environment online and offline. In contrast, this study moved onto fully online systems and explored how a sense of presence worked for students’ learning outcomes at university English writing courses. The two research questions for this study are: 1) What is the relationship between a sense of presence (teaching, cognitive, social presence) and learning outcomes (group cohesion, class satisfaction)? and 2) What are the variables among a sense of presence that affect group cohesion and class satisfaction? For the purposes of this study, 46 university students from English composition courses answered student questionnaires in the spring of 2021. Correlation and multiple-regression analyses were conducted to look into the relationships among the variables. Additionally, focus-group interviews were conducted and teaching journals were analyzed. The major findings were revealed as follows: Firstly, a sense of presence was significantly related to group cohesion and satisfaction. Secondly, social presence and cognitive presence only had a predictive power of group cohesion. Thirdly, cognitive presence and teaching presence were significant predictors of class satisfaction. Pedagogical implications are discussed for those interested in applying flipped learning in a fully online setting.
        6,300원
        16.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many manufacturers applying third party logistics (3PLs) have some challenges to increase their logistics efficiency. This study introduces an effort to estimate the weight of the delivery trucks provided by 3PL providers, which allows the manufacturer to package and load products in trailers in advance to reduce delivery time. The accuracy of the weigh estimation is more important due to the total weight regulation. This study uses not only the data from the company but also many general prediction variables such as weather, oil prices and population of destinations. In addition, operational statistics variables are developed to indicate the availabilities of the trucks in a specific weight category for each 3PL provider. The prediction model using XGBoost regressor and permutation feature importance method provides highly acceptable performance with MAPE of 2.785% and shows the effectiveness of the developed operational statistics variables.
        4,000원
        17.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, traffic accidents have continued to occur due to the failure to secure a safe distance for trucks. Unlike passenger cars, freight cars have a large fluctuation in the weight of the vehicle's shaft depending on the load, and the fatality of accidents and the possibility of accidents are high. In this study, a braking distance prediction model according to the driving speed and loading weight of a three-axis truck was implemented to prevent a forward collision accident. Learning data was generated based on simulation, and a prediction model based on machine learning was implemented to finally verify accuracy. The extra trees algorithm was selected based on the most frequently used R2 Score among regression analyses, and the accuracy of the braking distance prediction model was 98.065% through 10 random scenarios.
        4,000원
        18.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 단면설계 및 열 교환 장치 위치 변경을 통해 온실의 구조 변경을 진행하였으며, 선행연구를 통해 개발된 모델을 근간으로 하여 개선 여부에 따른 온실 내부 환경을 예측하였다. 단면형상과 열 교환 장치의 개선 후 유속 변화에 따른 시뮬레이션 분석을 진행하였으며, 이 때 온도와 균일도는 각각 평균 0.65°C, 0.75%p 상승함을 확인하였다. 해석대상 온실과 같은 소규모 온실의 경우 방열관의 난방성능 개선보다 FCU에 의해 형성되는 공기 유동이 균일한 환경 조성에 더 큰 영향을 미치는 것으로 판단된다. 개선 전 ‧ 후 온실에 환기시스템 적용 시 공기 유동 특성 분석을 위해 시뮬레이션 분석을 진행하였다. 공기 유동과 공기령은 유사한 분포를 보였으며, 개선 후 온실의 공기령이 개선 전 온실 대비 18초 낮게 나타났다. 개선 전 ‧ 후 온실 시뮬레이션 분석 결과 전체적으로 개선된 온실에서의 평균온도 및 온도 균일도 상승, 최대편차 감소 등 내부 환경의 균일성이 향상됨을 확인하였다. 선행연구로 개발 된 모델은 형상 변경, 열 교환 장치 위치 변경 등에 따라 변화하는 온실 내부 환경을 예측할 수 있음을 확인하였으며, 온실 설계, 온실 내 난방시스템 설계 등의 분야에 적용 가능할 것으로 판단된다.
        4,000원
        19.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study presents the estimation of crack depth by analyzing temperatures extracted from thermal images and environmental parameters such as air temperature, air humidity, illumination. The statistics of all acquired features and the correlation coefficient among thermal images and environmental parameters are presented. The concrete crack depths were predicted by four different machine learning models: Multi-Layer Perceptron (MLP), Random Forest (RF), Gradient Boosting (GB), and AdaBoost (AB). The machine learning algorithms are validated by the coefficient of determination, accuracy, and Mean Absolute Percentage Error (MAPE). The AB model had a great performance among the four models due to the non-linearity of features and weak learner aggregation with weights on misclassified data. The maximum depth 11 of the base estimator in the AB model is efficient with high performance with 97.6% of accuracy and 0.07% of MAPE. Feature importances, permutation importance, and partial dependence are analyzed in the AB model. The results show that the marginal effect of air humidity, crack depth, and crack temperature in order is higher than that of the others.
        4,300원
        1 2 3 4