검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 119

        41.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SKD11 (ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. Adding of CNTs increased the performance of mechanical properties more. 1, 3 vol% CNTs was dispersed in SKD11 matrix by mechanical alloying. SKD11 carbon nanocomposite powder was sintered by spark plasma sintering process. FE-SEM, HR-TEM and Raman analysis were carried out for the SKD11 carbon nanocomposites.
        4,000원
        42.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 메탄 대향류 확산 화염내 탄소나노튜브의 합성에 대하여 실험 및 수치적 연구를 수행하였다. 아세틸렌을 일정비율로 메탄에 혼합하여 연료 가스로 사용하였으며, 탄소나노튜브의 합성을 위한 촉매로서 페로센이 이용되었다. 주요 인자로는 메탄 연료에 대한 아세틸렌의 혼합비율이며, 2 %, 6 %, 10 %로 혼합하였다. 탄소나노튜브를 채취한 그리드 위의 탄소나노튜브 합성 특성은 SEM 이미지로 분석되었다. 수치해석에서 화학반응 메카니즘으로는 GRI-Mech 3.0 이 적용되었다. 수치결과로는 아세틸렌 혼합 비율이 증가할수록 화염 온도도 증가하며 CO 몰분율도 증가하는 것을 알 수 있다. 실험결과로는 2% 아세틸렌 혼합 화염이 6 % 및 10 % 혼합 화염과 비교해 탄소나노튜브 합성이 잘 이루어졌음을 알 수 있었다. 이것은 6 % 및 10 % 아세틸렌 혼합화염의 경우 과도한 카본 소스의 생성이 발생해 오히려 화염 내 카본소스가 촉매입자로의 공급을 방해하기 때문이라 생각한다. 이 결과로부터 양호한 질의 탄소나노튜브 생성을 위해서는 적정한 양의 카본소스가 생성되어야 한다는 것을 알 수 있었다.
        4,000원
        43.
        2014.12 구독 인증기관 무료, 개인회원 유료
        다중벽 탄소나노튜브(MWCNT)는 전기적, 기계적 성질이 매우 우수한 소재이나, MWCNT를 복합 체로 응용하는 과정에서 MWCNT의 분산이 어려워 복합체의 제조에 제한을 받고 있다. 본 연구에서는 MWCNT의 표면을 산화시켜 -OH기를 표면에 도입하고, 표면에 음전하를 증가시켜 불소 고분자(PTFE) 도막에서 MWCNT의 분산을 증대시켰다. 그리고, MWCNT의 효과적인 분산으로 PTFE 복합체 도막의 경도와 소수성이 증가되고, 전기 정도성을 부여하여 표면의 기능성이 증대됨을 보여주었다.
        4,000원
        45.
        2014.09 구독 인증기관·개인회원 무료
        탄소나노튜브를 첨가한 시멘트계 재료는 압축하중이 가해짐에 따라 저항이 변화되는 특성을 지니고 있다. 이러한 특성을 이용한다면 콘크리트 포장 도로에 가해지는 하중을 실시간으로 감지 할 수 있다. 기존에 사 용되어 왔던 센서들은 포장 재료 겉 표면에 붙이거나, 타설과 동시에 내부에 심어 사용을 한다. 이러한 센서 들은 시간이 지남에 따라서 포장 재료와 이질적인 거동을 하게 되면서 장기거동을 계측하는데 있어 문제점 이 있다. 그러나 탄소나노튜브를 첨가한 시멘트계 합성물은 자체적으로 포장 재료로서 사용되며 동시에 센 서로서도 활용 할 수 있는 첨단 포장 재료가 될 수 있다. 선행 연구 결과 시편의 내부 수분량이 압저항 효과 에 큰 영향을 미친다는 것을 알 수 있었다. 이러한 실험 결과를 바탕으로 시편의 수분량을 정량적으로 평가 할 수 있는 내부 상대습도를 측정하고 이에 따른 압저항 효과를 분석하는 것이 본 연구의 목표다.
        46.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recent studies have been reported the presence of Endocrine Disrupting Compounds, Pharmaceuticals and Personal Care Products (EDC/PPCPs) in surface and wastewater, which could potentially affect to the complicate behavior in coupled presence of nano-colloid particles and surfactants (adsorption, dispersion, and partitioning). In this study, the adsorption of EDC/PPCPs by Single Walled Carbon Nanotubes (SWNTs) as a representative of nano-particles in cationic surfactant solutions were investigated. Hydrophobic interactions (π-π Electron Donor-Acceptor) have been reported as a potential adsorption mechanisms for EDC/PPCPs onto SWNTs. Generally, the adsorptive capacity of the relatively hydrophobic EDC/PPCPs onto SWNTs decreased in the presence of cationic surfactant (Cetyltrimethyl Ammonium Bromide, CTAB). This study revealed that the competitive adsorption occurred between CTAB cations and EDC/PPCPs by occupying the available SWNT surface (CTAB adsorption onto SWNTs shows five-regime and maximum adsorption capacity of 370.4 mg/g by applying the BET isotherm). The adsorption capacity of 17α-ethinyl estradiol (EE2) on SWNT showed the decrease of 48% in the presence of CTAB. However, the adsorbed naproxen (NAP) surely increased by forming hemimicelles and resulted in a favorable media formation for NAP partition to increase SWNTs adsorption capacity. The adsorbed NAP increased from 24 to 82.9 mg/g after the interaction of CTAB with NAP. The competitive adsorption for EDC/PPCPs onto SWNTs is likely to be a key factor in the presence of cationic surfactant, however, NAP adsorption showed a slight competition through CH3-CH3 interaction by forming hemimicelles on SWNT surface.
        4,200원
        47.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper describes the surface modification effect of a Ti substrate for improved dispersibility of the cat-alytic metal. Etching of a pure titanium substrate was conducted in 50% H₂SO₄, 50˚C for 1h-12h to observe the sur-face roughness as a function of the etching time. At 1h, the grain boundaries were obvious and the crystal grains weredistinguishable. The grain surface showed micro-porosities owing to the formation of micro-pits less than 1 µm in diam-eter. The depths of the grain boundary and micro-pits appear to increase with etching time. After synthesizing the cat-alytic metal and growing the carbon nano tube (CNT) on Ti substrate with varying surface roughness, the distributiontrends of the catalytic metal and grown CNT on Ti substrate are discussed from a micro-structural perspective.
        4,000원
        48.
        2013.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We demonstrated size control of Au nanoparticles by heat treatment and their use as a catalyst for single-walled carbon nanotube (SWNTs) growth with narrow size distribution. We used uniformly sized Au nanoparticles from commercial Au colloid, and intentionally decreased their size through heat treatment at 800 oC under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates to achieve parallel alignment of the SWNTs and to investigate the size relationship between Au nanoparticles and SWNTs. After the SWNTs were grown via chemical vapor deposition using methane gas, it was found that a high degree of horizontal alignment can be obtained when the particle density is low enough to produce individual SWNTs. The diameter of the Au nanoparticles gradually decreased from 3.8 to 2.9 nm, and the mean diameter of the SWNTs also changed from 1.6 to 1.2 nm for without and 60 min heat treatment, respectively. Raman results reconfirmed that the prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distribution. This work demonstrated that heat treatment can be a straightforward and reliable method to control the size of catalytic nanoparticles and SWNT diameter.
        4,000원
        49.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 탄소나노튜브와 폴리프로필렌 기지 간 계면결합력과 나노튜브의 국부적 응집에 따른 나노복합재의 탄소성거동 변화에 대한 파라메트릭 연구를 수행한다. 나노복합재의 탄소성 거동 예측을 위해 분자동역학 전산모사를 수행하고, 분자동역학 결과와 Mori-Tanaka 모델을 적용한 비선형 미시역학 모델을 연계하여 나노복합재 내 흡착계면의 탄소성 거동을 역으로 도출하는 2단계 영역분할 기법을 적용하였다. 미시역학 모델에서는 시컨트 계수방법을 Mori-Tanaka 모델에 적용하여 나노복합재의 비선형 거동을 예측하는 방법을 적용하였으며, 나노튜브와 기지 간 재료계면의 불완전 결합을 고려하기 위해 변위 불연속 조건을 적용하였다. 흡착영역을 고려한 미시역학 모델을 통해 흡착계면의 유무 및 재료계면 결합력 변화 그리고 나노튜브의 국부적 응집현상에 따른 나노복합재의 응력-변형률 관계를 예측하였다. 그 결과 나노튜브의 국부적 응집이나노복합재의 강화효과를 저하시키는 가장 중요한 변수임을 확인하였다.
        4,000원
        50.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        나노 소재는 표면적이 매우 크고 크기나 기공이 균일하여 분리막에서 물질 전달통로나 특수한 기능성을 갖게 하는 소재로 이용이 가능하다. 그중에서도, 그래핀, 그래핀 옥사이드 및 탄소나노튜브와 같은 나노탄소 구조체에 대한 연구가 활발히 이루어지고 있다. 일차원 구조를 갖는 탄소나노튜브의 경우 우수한 열적, 화학적 및 기계적 성질을 가지고 있으나, 기 존 연구에서는 주로 고분자와 혼합하여 기계적 물성을 강화하는 복합소재로서 사용됐으며, 응용분야의 한계를 가지고 있었다. 본 연구에서는 폴리 에틸렌 글리콜 다이아크릴레이트(PEGDA) 고분자 내에 개질된 탄소나노튜브를 혼합하여, 기체 분리 막에서의 투과도 및 선택도의 변화를 관찰하였다.
        4,000원
        51.
        2013.09 구독 인증기관 무료, 개인회원 유료
        Cyclodextrin-graphene oxide film on the carbon nanotubes matrix is synthesized by a simple chemical method, and physical, chemical, and electrochemical properties of the composites are investigated. Capacitance is improved markedly up to 84 F/g with chemically reduced graphene oxide at the current density of 0.7 A/ g compared with 2.6 F/g of the previous composites having no graphene oxide. The new composites electrodes show more redox processes, originated from the graphene oxide, in the cycle voltammetry compared to the previous composites which had no graphene oxide, indicating enhancement of capacitances. Following improved energy density of the new composite makes it possible to be an electrode of the hybrid capacitors.
        4,000원
        52.
        2013.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Controlling the stick and slip motions of the contact lines in a confined geometry comprised of a spherical lens with a flat substrate is useful for manufacturing polymer ring patterns. We used a sphere on a flat geometry, by which we could control the interfaces of the solution, vapor and substrate. By this method, hundreds of concentric ring-pattern formations of a linear conjugated polymer, poly [2-methoxy-5-(2-thylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), were generated with excellent regularity over large areas after complete solvent evaporation. Subsequently, the MEH-PPV ring patterns played a role as a directed template to organize highly regular concentric rings of single-walled carbon nanotubes(SWCNTs); when a droplet of the SWCNT suspension in water was casted onto the prepared substrate, hydrophobic polymer patterns confined the water dispersed SWCNTs in between the hydrophilicized SiO2/Si substrate. As the solvent evaporated, SWCNT-rings were formed in between MEH-PPV rings with controlled density. Finally, we used a lift-off process to produce SWCNT patterns by the removal of a sacrificial polymer template with organic solvent. We also fabricated a field effect transistor using self-assembled SWCNT networks on a SiO2/Si substrate.
        4,000원
        53.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SKD11 (ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is charac- terized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. The CNTs was good additives to improve the mechanical properties of metal. In this study, 1, 3 vol% CNTs was dispersed in SKD11 matrix by mechanical alloying. The SKD11+ CNT hybrid nanocomposites were investigated by FE-SEM, particle size distribution, hardness and wear resistance. The CNT was well dispersed in the SKD11 matrix and the mechanical properties of the composite were improved by CNTs addition. It shows good fea- sibility as cold work die tool.
        4,000원
        54.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We examined various ball-milling parameters which affect the structural and morphological modification of multi-wall carbon nanotubes. In particular, the effect of milling mode and the use of different milling agents were exam- ined. Friction milling mode induced more structural changes than impact milling mode except the use of dry ice as a milling agent. Wet milling was helpful for reducing more effectively the agglomeration of nanotubes than dry milling. The use of hard solid particles such as silica and alumina as milling agents resulted in an effective shortening of nan- otubes, but often susceptible to the amorphization and the destruction of crystallinity.
        4,000원
        55.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aims to review the possibility of developing a road snow-melting system that can prevent slip accidents by maintaining a constant temperature of the winter roads and enhance performance of structures, including improvement of compressive strength by mixing carbon nanotube (hereafter referred to as CNT) with cement paste, the basic material. METHODS : To achieve the above purpose, an experiment was conducted by mixing power-type CNT and wrap-type CNT up to cement paste formulation by weight of 0.0wt%~4.1wt% in accordance with "KS L ISO 679(of cement strength test method)", and compressive strength was measured at 28 days of curing. In addition, the volume resistivity of the specimen was measured to test thermal and electrical characteristics, and the rate of temperature changes in specimen surface by power consumption was measured by passing electricity through the cross-sections of the specimen. Meanwhile, the criteria for checking the performance as a road snow-melting system was determined as volume resistivity of 100Ω·cm or less. RESULTS : A comparative analysis between specimen with 0wt% CNT content in plain status and specimen containing various types of CNTs was carried out. From its results, it was found that compressive strength increased approximately 19%, showing the highest rate when 0.2wt% of wrap-type CNT was contained, but volume resistivity of 100Ω·cm or less appeared only in specimens containing more than 0.2wt% CNT. In addition, it was observed that the surface temperature increased by 4.62℃ per minute on average in specimens containing 3.2wt% CNT. CONCLUSIONS : In this study, CNT was examined as an underlying material for a road snow-melting system, and the possibility of developing the road now-melting system was reviewed by conducting various experiments using CNT-Cement composites. From the experimental results, the specimens were found to have a superior performance when compared to the existing road snow-melting systems that place the heat transfer medium such as copper on the road. However, satisfactory strength performance were not obtained from the specimen containing CNT(2.0% or more) that functions as a heating element, which leads to the need for reviewing methods to increase the strength by using plasticizer or admixture.
        4,000원
        56.
        2012.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on the NO gas sensing properties of Al-doped zinc oxide-carbon nanotube (ZnO-CNT) wire-like layered composites fabricated by coaxially coating Al-doped ZnO thin films on randomly oriented single-walled carbon nanotubes. We were able to wrap thin ZnO layers around the CNTs using the pulsed laser deposition method, forming wire-like nanostructures of ZnO-CNT. Microstructural observations revealed an ultrathin wire-like structure with a diameter of several tens of nm. Gas sensors based on ZnO-CNT wire-like layered composites were found to exhibit a novel sensing capability that originated from the genuine characteristics of the composites. Specifically, it was observed by measured gas sensing characteristics that the gas sensors based on ZnO-CNT layered composites showed a very high sensitivity of above 1,500% for NO gas in dry air at an optimal operating temperature of 200˚C; the sensors also showed a low NO gas detection limit at a sub-ppm level in dry air. The enhanced gas sensing properties of the ZnO-CNT wire-like layered composites are ascribed to a catalytic effect of Al elements on the surface reaction and an increase in the effective surface reaction area of the active ZnO layer due to the coating of CNT templates with a higher surface-to-volume ratio structure. These results suggest that ZnO-CNT composites made of ultrathin Al-doped ZnO layers uniformly coated around carbon nanotubes can be promising materials for use in practical high-performance NO gas sensors.
        4,000원
        57.
        2011.11 구독 인증기관·개인회원 무료
        대향류 메탄/수소 확산화염을 통해 탄소나노튜브와 탄소나노섬유를 합성하였다. 탄소나노튜브 합성을 위한 촉매금속으로는 페로션을 활용하였고 샘플링을 위해 구리기판을 사용하였다. 본 실험에서 주요한 실험의 변수는 수소의 비율과 샘플링 위치이다. 그 결과, 연료중 수소의 비율이 증가하고 샘플링 위치와 버너측 노즐사이의 거리가 멀어질수록 탄소나노튜브가 다량 합성되었다.
        58.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanotube(CNT) plays an essential role in various fields of nano based science and technology. Recently, silica coated CNT composites are interested because they are useful for the optical, magnetical, and catalytic applications. In this report, carboxyl groups were introduced on the MWCNT using nitric acid. In order to maximize the silica encapsulation efficiency, carboxyl groups of MWCNT reacted with a silane coupling agent were used to prepare silica coated MWCNT. Due to their strong interaction between modified MWCNT and TEOS. Silica layer with a controllable thickness was achieved. Silica coated MWCNT were further utilized as the template for the synthesis of hollow silica nanotubes after 800℃ calcination.
        4,200원
        59.
        2011.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanosized Pt, Pt-Ru and Pt-CeO2 electrocatalysts supported on acid-treated carbon nanotube (CNT) were synthesized by microwave-assisted heating of polyol process using H2Cl6Pt·6H2O, RuCl3, CeCl3 precursors, respectively, and were characterized by XRD and TEM. And then the electrochemical activity of methanol oxidation for catalyst/CNT nanocomposite electrodes was investigated. The microwave assisted polyol process produced the nano-sized crystalline catalysts particles on CNT. The size of Pt supported on CNT was 7~12 nm but it decreased to 3~5 nm in which 10wt% sodium acetate was added as a stabilizer during the polyol process. This fine Pt catalyst particles resulted in a higher current density for Pt/CNT electrode. It was also found that 10 nm size of PtRu alloys were formed by polyol process and the onset potential decreased with Ru addition. Cyclic voltammetry analysis revealed that the Pt75Ru25/CNT electrode had the highest electrochemical activity owing to a higher ratio of the forward to reverse anodic peak current. And the chronoamperemetry test showed that Pt75Ru25 catalyst had a good catalyst stability. The activity of Pt was also found to be improved with the addition of CeO2.
        4,000원
        60.
        2011.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Gold have been used as an electrode materials having a good mechanical flexibility as well as electrical conductivity, however the stretchability of the gold on a flexible substrate is poor because of its small elastic modulus. To overcome this mechanical inferiority, the reinforcing gold is necessary for the stretchable electronics. Among the reinforcing materials having a large elastic modulus, carbon nanotube (CNT) is the best candidate due to its good electrical conductivity and nanoscale diameter. Therefore, similarly to ferroconcrete technology, here we demonstrated gold electrodes mechanically reinforced by inserting fabrics of CNTs into their bodies. Flexibility and stretchability of the electrodes were determined for various densities of CNT fabrics. The roles of CNTs in resisting electrical disconnection of gold electrodes from the mechanical stress were confirmed using field emission scanning electron microscope and optical microscope. The best mechanical stability was achieved at a density of CNT fabrics manufactured by 1.5 ml spraying. The concept of the mechanical reinforced metal electrode by CNT is the first trial for the high stretchable conductive materials, and can be applied as electrodes materials in various flexible and stretchable electronic devices such as transistor, diode, sensor and solar cell and so on.
        4,000원
        1 2 3 4 5